Fall 2023 Math 1B Final Review Sheet (Haiman)

$$
\begin{aligned}
\frac{d}{d x} x^{n} & =n x^{n-1} \\
\frac{d}{d x} e^{x} & =e^{x} \\
\frac{d}{d x} a^{x} & =a^{x} \ln a \\
\frac{d}{d x} \ln x & =\frac{1}{x} \\
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\sec ^{2} x \\
\frac{d}{d x} \sec x & =\sec x \tan x \\
\frac{d}{d x} \csc x & =-\csc x \cot \\
\frac{d}{d x} \cot x & =-\csc 2 x \\
\frac{d}{d x} \arcsin x & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arccos x & =\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arctan x & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Basic Integrals
Don't forget $+C$ on all of these!

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq-1) \\
& \int \frac{1}{x} d x=\ln |x| \\
& \int e^{x} d x=e^{x} \\
& \int a^{x} d x=\frac{a^{x}}{\ln a} \\
& \int \sin x d x=-\cos x \\
& \int \cos x d x=\sin x \\
& \int \sec ^{2} x d x=\tan x \\
& \int \csc ^{2} x d x=-\cot x \\
& \int \sec x \tan x d x=\sec x \\
& \int \csc x \cot x d x=-\csc x \\
& \int \tan x d x=\ln |\sec x| \\
& \int \cot x d x=\ln |\sin x| \\
& \int \sec x d x=\ln |\sec x+\tan x| \\
& \int \csc x d x=\ln |\csc x-\cot x| \\
& \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x \\
& \int \frac{1}{1+x^{2}} d x=\arctan x \\
& \int \frac{1}{x \sqrt{x^{2}-1}} d x=\operatorname{arcsec} x
\end{aligned}
$$

Trigonometric Identitie

Pythagorean identities:

$$
\begin{aligned}
\sin ^{2} x+\cos ^{2} x & =1 \\
\tan ^{2} x+1 & =\sec ^{2} x
\end{aligned}
$$

$\underline{\text { Half-angle identities }}$

$$
\begin{aligned}
\sin ^{2} x & =\frac{1}{2}(1-\cos 2 x) \\
\cos ^{2} x & =\frac{1}{2}(1+\cos 2 x)
\end{aligned}
$$

Double-angle identities:

$$
\begin{aligned}
& \sin 2 x=2 \sin x \cos x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

Sum-and-difference identities:

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\sin (A-B) & =\sin A \cos B-\cos A \sin B \\
\cos (A-B) & =\cos A \cos B+\sin A \sin B
\end{aligned}
$$

Product identities:

$$
\begin{aligned}
\sin A \cos B & =\frac{1}{2}[\sin (A+B)+\sin (A-B)] \\
\cos A \cos B & =\frac{1}{2}[\cos (A+B)+\cos (A-B)] \\
\sin A \sin B & =\frac{1}{2}[\cos (A-B)-\cos (A+B)]
\end{aligned}
$$

Substitution

Indefinite:

$$
\int f(u(x)) u^{\prime}(x) d x=\int f(u) d u
$$

Definite:

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

Integration by Parts

Indefinite:

$$
\int u d v=u v-\int v d u
$$

Definite:

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

To pick u, use the LIATE rule:

1. Logarithmic (e.g. $\ln x$)
2. Inverse trigonometric (e.g. $\arcsin x$)
3. Algebraic (e.g. x^{2})
4. Trigonometric (e.g. $\sin x$)
5. Exponential (e.g. e^{x})

The function higher on the list should be u. The remaining factor should be $d v$. Warning: LIATE is only a guideline, not a rule. It will not work every time.

Trigonometric Substitution

Integrals involving the following expressions can usually be simplified with trigonometric substitution:

Expression	Substitution	Trig Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$\sec ^{2} \theta-1=\tan ^{2} \theta$

Note: there need not be a square root in order to apply trig substitution. It can apply to more general integrals.

Terms like $\sin (\arctan (x / a))$ can be simplified by drawing a triangle and using the Pythagorean theorem.

Trigonometric Integrals

Strategy for $\int \sin ^{m} x \cos ^{n} x d x$:

1. If n is odd, save one factor of $\cos x$, rewrite in terms of $\sin x$, and substitute $u=\sin x$.

Example:

$$
\begin{aligned}
\int \sin ^{2} x \cos ^{5} x d x & =\int \sin ^{2} x \cos ^{4} x \cos x d x \\
& =\int \sin ^{2} x\left(1-\sin ^{2} x\right)^{2} \cos x d x \\
& =\int u^{2}\left(1-u^{2}\right)^{2} d u
\end{aligned}
$$

2. If m is odd, save one factor of $\sin x$, rewrite in terms of $\cos x$, and substitute $u=\cos x$.
3. If both n and m are even, then use the half-angle identities.

Strategy for $\int \tan ^{m} x \sec ^{n} x d x$:

1. If n is even, then save a factor of $\sec ^{2} x$ and let $u=\tan x$.
2. If m is odd, then save a factor of $\sec x \tan x$ and let $u=\sec x$.
3. Otherwise, other strategies are needed. Use trig identities to help.

For $\int \sin (a x) \cos (b x) d x, \quad \int \sin (a x) \sin (b x) d x$, and $\int \cos (a x) \cos (b x) d x$, use the product identities to write as a sum

Integration by Partial Fractions

The method of partial fractions is useful to solve integrals involving rational functions $P(x) / Q(x)$, where $P(x)$ and $Q(x)$ are polynomials.

1. If the degree of the numerator is greater than or equal to the degree of the denominator, divide the numerator by the denominator.
2. Factor the denominator. Identify the linear and irreducible quadratic factors.
3. Perform partial fraction decomposition.
4. Integrate each term separately.

Cases for partial fraction decomposition:

1. Distinct linear factors: use A, B, C, etc. for numerators.

Example:

$$
\frac{x^{2}+2 x+1}{x(2 x-1)(x+2)}=\frac{A}{x}+\frac{B}{2 x-1}+\frac{C}{x+2}
$$

2. Repeated linear factors: add a separate term for each power.
Example:
$\frac{x^{3}-x+1}{x^{2}(x-1)^{3}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{(x-1)^{2}}+\frac{E}{(x-1)^{3}}$
3. Irreducible quadratic factors: use $A x+B, C x+$ \bar{D}, etc. for numerators.
Example:

$$
\frac{x}{(x-2)\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{x^{2}+4}
$$

4. Repeated irreducible quadratic factors: add a separate term for each power.
Example:

$$
\frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}}
$$

Common Algebraic Tricks

Some integrals require algebraic manipulation before solving with one of the standard techniques. Here are a few common cases:

- Rationalizing substitutions: perform a substitution to turn a nonrational function into a rational function.
Example: Using $u=\sqrt{x+4}$,

$$
\int \frac{\sqrt{x+4}}{x} d x=2 \int \frac{u^{2}}{u^{2}-4} d u
$$

This integral can now be completed using trig sub or partial fractions.

- Completing the square: eliminate the linear term in a quadratic.

$$
x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}+\left(c-\frac{b^{2}}{4}\right) .
$$

Example:

$$
\int \frac{1}{x^{2}-2 x+2} d x=\int \frac{1}{(x-1)^{2}+1} d x
$$

- Multiplying by the conjugate: multiplying the numerator and denominator by a conjugate can be useful for simplification.
Example:

$$
\begin{aligned}
\int & \frac{1}{\sqrt{x+1}+\sqrt{x}} d x \\
& =\int \frac{1}{\sqrt{x+1}+\sqrt{x}} \cdot \frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}} d x \\
& =\int \frac{\sqrt{x+1}-\sqrt{x}}{(x+1)-x} d x \\
& =\int(\sqrt{x+1}-\sqrt{x}) d x
\end{aligned}
$$

- Substituting \sqrt{x} : if the integrand contains \sqrt{x}, then $u=\sqrt{x}$ can often be a useful substitution. Example:

$$
\int e^{\sqrt{x}} d x=2 \int u e^{u} d u
$$

Now use integration by parts.

Numerical Integration

In each method, $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$ for $i=0,1,2, \ldots, n$. The error E of an approximate integral is the difference between the true and approximated value of the integral.

Midpoint rule:

$$
\begin{aligned}
M_{n} & =\Delta x\left[f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{1}+x_{2}}{2}\right)\right. \\
& \left.+\cdots+f\left(\frac{x_{n-1}+x_{n}}{2}\right)\right] \\
\left|E_{M}\right| & \leq \frac{K(b-a)^{3}}{24 n^{2}}, \quad K=\max _{[a, b]}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

Trapezoidal rule:

$$
\begin{aligned}
T_{n} & =\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\left|E_{T}\right| & \leq \frac{K(b-a)^{3}}{12 n^{2}}, \quad K=\max _{[a, b]}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

Simpson's rule:

$$
\begin{aligned}
S_{n} & =\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)\right. \\
& \left.+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\left|E_{S}\right| & \leq \frac{L(b-a)^{5}}{180 n^{4}}, \quad L=\max _{[a, b]}\left|f^{(4)}(x)\right|
\end{aligned}
$$

Arc Length

The arc length of the curve $y=f(x)$ from $x=a$ to $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Improper Integrals

Two types of improper integrals:

1. Infinite intervals: endpoints at $\pm \infty$.

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

2. Discontinuities: if $f(x)$ is discontinuous at b,

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

An improper integral is convergent if the limit(s) exist. Otherwise, it is divergent.

Comparison Theorem: Suppose that f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$.

- If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent
- If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

Center of Mass

The center of mass, or centroid, of N masses $m_{1}, m_{2}, \ldots, m_{n}$ at points $x_{1}, x_{2}, \ldots, x_{n}$, is given by

$$
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
$$

For a plate of uniform density between the curves $f(x)$ and $g(x)$ from $x=a$ to $x=b$, the center of mass is

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{A}=\frac{\int_{a}^{b} x[f(x)-g(x)] d x}{\int_{a}^{b} f(x) d x} \\
& \bar{y}=\frac{M_{x}}{A}=\frac{\int_{a}^{b} \frac{1}{2}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x}{\int_{a}^{b} f(x) d x}
\end{aligned}
$$

Theorem of Pappus: Let \mathcal{R} be a plane region that lies entirely on one side of a line l in the plane. If \mathcal{R} is rotated about l, then the volume of the resulting solid is the product of the area A of \mathcal{R} and the distance d traveled by the centroid of \mathcal{R}.

Sequences

A sequence is an ordered list of numbers:

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots
$$

A sequence $\left\{a_{n}\right\}$ has a limit L if a_{n} can get arbitrarily close to L as n gets large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say it is convergent. Otherwise, it is divergent.

A sequence $\left\{a_{n}\right\}$ is increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$. It is decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$. The sequence is monotonic if it is either increasing or decreasing.

A sequence $\left\{a_{n}\right\}$ is bounded above if there exists a number M such that $a_{n} \leq M$ for all $n \geq 1$. Likewise, it is bounded below if there exists a number m such that $a_{n} \geq m$ for all $n \geq 1$. If it is bounded above and below, then it is bounded.

Limit Laws for Sequences

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent and c is constant, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} c a_{n} & =c \lim _{n \rightarrow \infty} a_{n} \\
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right) & =\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \quad\left(\text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0\right) \\
\lim _{n \rightarrow \infty}\left(a_{n}^{p}\right) & =\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \quad\left(\text { if } p>0 \text { and } a_{n}>0\right)
\end{aligned}
$$

Convergence Theorems for Sequences

These theorems are useful for proving the convergence (and corresponding limit) of more complicated sequences.

- If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$, then $\lim _{n \rightarrow \infty} a_{n}=L$.
- (Squeeze Theorem) If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
- If $\lim _{n \rightarrow \infty} a_{n}=L$ and f is continuous at L, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$,
- (Monotonic Sequence Theorem) Every bounded, monotonic sequence is convergent.

Series

A series, denoted $\sum a_{n}$, is an infinite sum of the terms a_{n}. A partial sum of the series is defined as

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{i=1}^{n} a_{n} .
$$

A series is convergent if $\lim _{n \rightarrow \infty} s_{n}=s$. Otherwise, it is divergent.

A series $\sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ is convergent. A series is conditionally convergent if it is convergent but not absolutely convergent.
$\underline{\text { Basic Properties: if } \sum a_{n} \text { and } \sum b_{n} \text { are convergent, }}$

1. $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
2. $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
3. $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$.

Common Series Examples
Geometric series:

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\cdots
$$

The nth partial sum is

$$
s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

The geometric series converges for $|r|<1$ and diverges for $|r| \geq 1$. If $|r|<1$, the limit is

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \quad(|r|<1)
$$

Harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

The harmonic series diverges.
$\underline{p \text {-series }}$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots
$$

The p-series converges for $p>1$ and diverges for $p \leq 1$. When $p=1$, this is the harmonic series.

Other series
These series are useful when using comparison tests.
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1 \quad$ (converges as telescoping series)
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ (converges by alternating series test)
$\sum_{n=1}^{\infty} \frac{1}{n!}=e \quad$ (converges by ratio test)
$\sum_{n=1}^{\infty} \frac{1}{n^{n}}$ (converges by root test)

Divergence Test

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Note: if $\lim _{n \rightarrow \infty} a_{n}=0$, then this test is inconclusive!

Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then,

- If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
- If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Note: don't forget about the continuous, positive, and decreasing assumptions. The integral/series need not start at 1: you can start at $n=2$ or later if needed.

Remainder Estimate for the Integral Test: if $a_{n}=$ $\overline{f(n)}$ satisfies the conditions for convergence in the integral test, then the remainder $R_{n}=s-s_{n}$ can be estimated as

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

Comparison Tests

Comparison Test: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.

- If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
- If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

Limit Comparison Test: Suppose $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is finite and $c>0$, then either both series converge or both diverge.

Note: don't forget the positive assumption.

Alternating Series Test

If we can write

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}
$$

where b_{n} is positive, decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\sum a_{n}$ converges.

Notes:

- $(-1)^{n}$ and $(-1)^{n+1}$ are valid. $(-1)^{2 n}$ is not.
- $\cos (\pi n)=(-1)^{n}$.

Alternating Series Estimation Theorem: For a series that satisfies the alternating series test, the remainder $R_{n}=s-s_{n}$ is bounded by the next term:

$$
\left|R_{n}\right| \leq b_{n+1}
$$

Ratio and Root Tests

Ratio Test:

- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then $\sum a_{n}$ is absolutely convergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$, then $\sum a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L=1$, then the test is inconclusive.

Root Test:

- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L<1$, then $\sum a_{n}$ is absolutely convergent.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L>1$, then $\sum a_{n}$ is divergent.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L=1$, then the test is inconclusive.

Notes:

- Don't forget to take the absolute value.
- For ratio test, look for factorials. For root test, look for nth powers.

Power Series

A power series centered at $x=a$ is of the form

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

The c_{n} 's are the coefficients of the series.
Convergence of Power Series: The radius of convergence is a number R such that the power series converges for $|x-a|<R$ and diverges for $|x-a|>R$. If the series converges only when $x=a$, then $R=0$. If the series converges for all x, then $R=\infty$. The interval of convergence consists of all values of x for which the series converges; this includes the endpoints.

To find the interval of convergence, first use the Ratio or Root Test to determine the radius of convergence R. Then, solve for the endpoints using a different convergence test.

Function Representations: use algebraic manipulations (and derivatives/integrals) to switch between functions and their series representations.
Example:

$$
\frac{1}{1+3 x^{2}}=\frac{1}{1-\left(-3 x^{2}\right)}=\sum_{n=0}^{\infty}\left(-3 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-3)^{n} x^{2 n}
$$

Differentiation and Integration: use the power rule term-by-term:

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x & =C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{aligned}
$$

The radius of convergence remains the same under differentation and integration, but the convergence of the endpoints can change.

Taylor Series

The Taylor series of a function f centered at $x=a$ is

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{aligned}
$$

The Maclaurin series is the Taylor series centered at zero. The Taylor polynomial $T_{n}(x)$ of degree n is the partial sum of the Taylor series up to the degree n term.

Taylor's Inequality: if $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a|<r$, then the remainder $R_{n}(x)=f(x)-T_{n}(x)$ of the Taylor series satisfies

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad(\text { for }|x-a|<r)
$$

A function $f(x)$ is analytic on $(a-r, a+r)$ if it converges to its Taylor series on $(a-r, a+r)$. To show $f(x)$ is analytic, show $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$ using Taylor's Inequality.

$$
\begin{aligned}
\text { Common Taylor Series } \\
\begin{array}{rlrl}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & R=1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots & R=\infty \\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\cdots & R=\infty \\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\cdots & R=\infty \\
\tan ^{-1} x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\cdots & R=1 \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\cdots & R=1 \\
(1+x)^{k} & =\sum_{n=0}^{k} \frac{k(k-1) \cdots(k-n+1)}{n!} x^{n} & R=1
\end{array}
\end{aligned}
$$

Differential Equations

A differential equation contains an unknown function and one or more of its derivatives. Its order is the highest derivative that occurs.

The general solution to a differential equation is a family of functions containing one or more arbitrary constants. An initial-value problem specifies an initial condition to solve for these constants and obtain one solution.

For first-order differential equations, the slope can be plotted at each point. This is called a direction (slope) field.

Euler's Method

Consider the initial-value problem

$$
y^{\prime}(x)=F(x, y), y\left(x_{0}\right)=y_{0}
$$

Euler's Method says that the solution $y(x)$ can be approximated as

$$
\begin{aligned}
x_{n} & =x_{n-1}+h \\
y_{n} & =y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right)
\end{aligned}
$$

where h is the step size.

Separable Equations

Separable equations take the form

$$
\frac{d y}{d x}=g(x) f(y)
$$

To solve these, move the x and y terms to different sides and integrate:

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

Then, solve for $y(x)$.
Note: don't forget $+C$ after the integration step.

First-Order Linear Equations

First-order linear equations take the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

To solve these, multiply both sides by the integrating factor

$$
I(x)=e^{\int P(x) d x}
$$

Then, integrate both sides and solve for $y(x)$.
Note: don't forget $+C$ after the integration step.

Modeling with Differential Equations

Natural Growth: For a population size P, relative growth rate k, and initial population size P_{0},

$$
\frac{d P}{d t}=k P, P(0)=P_{0}
$$

The solution is

$$
P(t)=P_{0} e^{k t}
$$

Logistic Growth: For a population size P, relative growth rate k, carrying capacity M, and initial population size P_{0},

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right), P(0)=P_{0}
$$

The solution is

$$
P(t)=\frac{M}{1+A e^{-k t}}, \quad A=\frac{M-P_{0}}{P_{0}}
$$

Mixing Problems: The general model is

$$
(\text { change in amount })=(\text { rate in })-(\text { rate out })
$$

Predator-Prey: For a prey population R and predator population W, the Lotka-Volterra model is

$$
\begin{aligned}
\frac{d R}{d t} & =k R-a R W \\
\frac{d W}{d t} & =-r W+b R W
\end{aligned}
$$

Equilibrium solutions occur when $\frac{d R}{d t}=\frac{d W}{d t}=0$.

Second-Order Linear Differential Equations

A constant-coefficient, second-order, linear differential equation takes the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x) .
$$

It is homogeneous if $g(x)=0$ and nonhomogeneous if $g(x) \neq 0$.

An initial-value problem specifies $y\left(x_{0}\right)$ and $y^{\prime}\left(x_{0}\right)$ at some point x_{0}. A boundary-value problem specifies $y\left(x_{0}\right)$ and $y\left(x_{1}\right)$ at two different points x_{0} and x_{1}.

Homogeneous case:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve, find roots of the auxiliary equation

$$
a r^{2}+b r+c=0
$$

Three cases:

1. Distinct real roots r_{1} and r_{2} :

$$
y(x)=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x} .
$$

2. Repeated real roots $r=r_{1}=r_{2}$:

$$
y(x)=C_{1} e^{r x}+C_{2} x e^{r x} .
$$

3. Complex roots $r=\alpha \pm \beta i$:

$$
y(x)=C_{1} e^{\alpha x} \cos \beta x+C_{2} e^{\alpha x} \sin \beta x .
$$

Nonhomogeneous case:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x)
$$

To solve, first find the homogeneous solution $y_{h}(x)$ using the method above. Then, find the particular solution $y_{p}(x)$ using undetermined coefficients or variation of parameters. The general solution is

$$
y(x)=y_{h}(x)+y_{p}(x) .
$$

Method of Undetermined Coefficients

For the method of undetermined coefficients, we guess the form of $y_{p}(x)$. There are three key cases:

1. Polynomials: if $g(x)$ is a polynomial, guess a general polynomial of the same degree:

$$
g(x)=3 x^{2} \Longrightarrow y_{p}(x)=A x^{2}+B x+C
$$

2. Exponentials: if $g(x)$ is an exponential, guess the same exponential with an unknown coefficient:

$$
g(x)=2 e^{-4 x} \Longrightarrow y_{p}(x)=A e^{-4 x}
$$

3. Sine/cosine: if $g(x)$ is a sine or cosine, guess a sine and cosine together:

$$
g(x)=\cos (2 x) \Longrightarrow y_{p}(x)=A \cos (2 x)+B \sin (2 x)
$$

If $g(x)$ is a sum, treat each term separately:

$$
\begin{gathered}
g(x)=e^{-3 x}+\cos (2 x) \\
\Longrightarrow y_{p}(x)=A e^{-3 x}+B \cos (2 x)+C \sin (2 x)
\end{gathered}
$$

If $g(x)$ is a product, combine the guesses together:

$$
\begin{gathered}
g(x)=x \cos (2 x) \\
\Longrightarrow y_{p}(x)=(A x+B) \cos (2 x)+(C x+D) \sin (2 x)
\end{gathered}
$$

If a term in your guess conflicts with the homogeneous solution $y_{h}(x)$, "boost" $y_{p}(x)$ by x or x^{2} :

$$
\begin{aligned}
y_{h}(x) & =C_{1} \cos (2 x)+C_{2} \sin (2 x), g(x)=\cos (2 x) \\
& \Longrightarrow y_{p}(x)=A x \cos (2 x)+B x \sin (2 x)
\end{aligned}
$$

After making a guess for $y_{p}(x)$, plug into the differential equation, group like terms together, and solve for the undetermined coefficients.

Variation of Parameters

For the method of variation of parameters, given the homogeneous solution

$$
y_{h}(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x),
$$

guess a particular solution

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

To solve for $u_{1}(x)$ and $u_{2}(x)$, solve the system

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}=g(x)
\end{array}\right.
$$

This simplifies down to

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)=g(x)
\end{array}\right.
$$

Isolate u_{1}^{\prime} and u_{2}^{\prime} and integrate both sides to solve for $u_{1}(x)$ and $u_{2}(x)$.

Vibrating Spring

The spring force with spring constant k is

$$
F_{\text {spring }}=-k x .
$$

The damping force with damping constant c is

$$
F_{d a m p i n g}=-c \frac{d x}{d t}
$$

Newton's Second Law yields the equation of motion:

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0
$$

If $c^{2}-4 k m>0$, the spring is overdamped. If $c^{2}-4 k m=0$, the spring is critically damped. If $c^{2}-4 k m<0$, the spring is underdamped. The period of oscillations for the underdamped case is

$$
T=\frac{2 \pi}{\beta}
$$

An external force $F(t)$ is inserted as a nonhomogeneous term in the equation of motion. Resonance occurs when $F(t)$ has the same frequency as the homogeneous solution.

Series Solutions

A series solution to a differential equation takes the form

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

Steps for solving:

1. Find $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ and plug into the differential equation. If there is a nonhomogeneous part, write its equivalent series representation.
2. Match the degree and starting indices of each series and solve for the recursion relation of the coefficients c_{n}.
3. Solve for the general term c_{n}. If the differential equation is first-order, leave c_{0} undetermined. If the differential equation is second-order, leave c_{0} and c_{1} undetermined.
4. Write $y(x)$ using c_{n}. You may need to split the series into several series for even/odd values of n, etc.
5. For initial-value problems, solve for c_{0} and/or c_{1} if necessary.
