
Fall 2023 Math 1B Final Review Sheet (Haiman)
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Basic Derivatives

Don’t forget +C on all of these!

ˆ
xn dx =

xn+1

n+ 1
(n ̸= −1)

ˆ
1

x
dx = ln |x|

ˆ
ex dx = ex

ˆ
ax dx =

ax

ln aˆ
sinx dx = − cosx

ˆ
cosx dx = sinx

ˆ
sec2 x dx = tanx

ˆ
csc2 x dx = − cotx

ˆ
secx tanx dx = secx

ˆ
cscx cotx dx = − cscx

ˆ
tanx dx = ln | secx|

ˆ
cotx dx = ln | sinx|

ˆ
secx dx = ln | secx+ tanx|

ˆ
cscx dx = ln | cscx− cotx|

ˆ
1√

1− x2
dx = arcsinx

ˆ
1

1 + x2
dx = arctanx

ˆ
1

x
√
x2 − 1

dx = arcsecx

Basic Integrals

Pythagorean identities:

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

Half-angle identities:

sin2 x =
1

2
(1− cos 2x)

cos2 x =
1

2
(1 + cos 2x)

Double-angle identities:

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x

Sum-and-difference identities:

sin(A+B) = sinA cosB + cosA sinB

cos(A+B) = cosA cosB − sinA sinB

sin(A−B) = sinA cosB − cosA sinB

cos(A−B) = cosA cosB + sinA sinB

Product identities:

sinA cosB =
1

2
[sin(A+B) + sin(A−B)]

cosA cosB =
1

2
[cos(A+B) + cos(A−B)]

sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

Trigonometric Identities

Indefinite: ˆ
f(u(x))u′(x) dx =

ˆ
f(u) du.

Definite:

ˆ b

a

f(u(x))u′(x) dx =

ˆ u(b)

u(a)

f(u) du.

Substitution
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Indefinite: ˆ
u dv = uv −

ˆ
v du.

Definite: ˆ b

a

u dv = uv

∣∣∣∣b
a

−
ˆ b

a

v du.

To pick u, use the LIATE rule:

1. Logarithmic (e.g. lnx)

2. Inverse trigonometric (e.g. arcsinx)

3. Algebraic (e.g. x2)

4. Trigonometric (e.g. sinx)

5. Exponential (e.g. ex)

The function higher on the list should be u. The re-
maining factor should be dv. Warning: LIATE is
only a guideline, not a rule. It will not work every
time.

Integration by Parts

Integrals involving the following expressions can
usually be simplified with trigonometric substitution:

Expression Substitution Trig Identity√
a2 − x2 x = a sin θ 1− sin2 θ = cos2 θ√
a2 + x2 x = a tan θ 1 + tan2 θ = sec2 θ√
x2 − a2 x = a sec θ sec2 θ − 1 = tan2 θ

Note: there need not be a square root in order to
apply trig substitution. It can apply to more general
integrals.

Terms like sin(arctan(x/a)) can be simplified by draw-
ing a triangle and using the Pythagorean theorem.

Trigonometric Substitution

Strategy for
´
sinm x cosn x dx:

1. If n is odd, save one factor of cosx, rewrite in
terms of sinx, and substitute u = sinx.

Example:

ˆ
sin2 x cos5 x dx =

ˆ
sin2 x cos4 x cosx dx

=

ˆ
sin2 x(1− sin2 x)2 cosx dx

=

ˆ
u2(1− u2)2 du.

2. If m is odd, save one factor of sinx, rewrite in
terms of cosx, and substitute u = cosx.

3. If both n andm are even, then use the half-angle
identities.

Strategy for
´
tanm x secn x dx:

1. If n is even, then save a factor of sec2 x and let
u = tanx.

2. If m is odd, then save a factor of secx tanx and
let u = secx.

3. Otherwise, other strategies are needed. Use trig
identities to help.

For
´
sin(ax) cos(bx) dx,

´
sin(ax) sin(bx) dx, and´

cos(ax) cos(bx) dx, use the product identities to
write as a sum.

Trigonometric Integrals

The method of partial fractions is useful to solve inte-
grals involving rational functions P (x)/Q(x), where
P (x) and Q(x) are polynomials.

1. If the degree of the numerator is greater than or
equal to the degree of the denominator, divide
the numerator by the denominator.

2. Factor the denominator. Identify the linear and
irreducible quadratic factors.

3. Perform partial fraction decomposition.

4. Integrate each term separately.

Cases for partial fraction decomposition:

1. Distinct linear factors: use A, B, C, etc. for
numerators.

Example:

x2 + 2x+ 1

x(2x− 1)(x+ 2)
=

A

x
+

B

2x− 1
+

C

x+ 2

2. Repeated linear factors: add a separate term for
each power.

Example:

x3 − x+ 1

x2(x− 1)3
=

A

x
+

B

x2
+

C

x− 1
+

D

(x− 1)2
+

E

(x− 1)3

3. Irreducible quadratic factors: use Ax+B, Cx+
D, etc. for numerators.

Example:

x

(x− 2)(x2 + 1)(x2 + 4)
=

A

x− 2
+
Bx+ C

x2 + 1
+
Dx+ E

x2 + 4

4. Repeated irreducible quadratic factors: add a
separate term for each power.

Example:

1− x+ 2x2 − x3

x(x2 + 1)2
=

A

x
+

Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2

Integration by Partial Fractions
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Some integrals require algebraic manipulation before
solving with one of the standard techniques. Here are
a few common cases:

• Rationalizing substitutions: perform a substitu-
tion to turn a nonrational function into a ratio-
nal function.

Example: Using u =
√
x+ 4,

ˆ √
x+ 4

x
dx = 2

ˆ
u2

u2 − 4
du.

This integral can now be completed using trig sub

or partial fractions.

• Completing the square: eliminate the linear
term in a quadratic.

x2 + bx+ c =

(
x+

b

2

)2

+

(
c− b2

4

)
.

Example:

ˆ
1

x2 − 2x+ 2
dx =

ˆ
1

(x− 1)2 + 1
dx

• Multiplying by the conjugate: multiplying the
numerator and denominator by a conjugate can
be useful for simplification.

Example:

ˆ
1√

x+ 1 +
√
x
dx

=

ˆ
1√

x+ 1 +
√
x
·
√
x+ 1−

√
x√

x+ 1−
√
x
dx

=

ˆ √
x+ 1−

√
x

(x+ 1)− x
dx

=

ˆ
(
√
x+ 1−

√
x) dx

• Substituting
√
x: if the integrand contains

√
x,

then u =
√
x can often be a useful substitution.

Example: ˆ
e
√
x dx = 2

ˆ
ueu du.

Now use integration by parts.

Common Algebraic Tricks

In each method, ∆x = b−a
n and xi = a + i∆x for

i = 0, 1, 2, . . . , n. The error E of an approximate
integral is the difference between the true and
approximated value of the integral.

Midpoint rule:

Mn = ∆x

[
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)

+ · · ·+ f

(
xn−1 + xn

2

)]

|EM | ≤ K(b− a)3

24n2
, K = max

[a,b]
|f ′′(x)|

Trapezoidal rule:

Tn =
∆x

2
[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)]

|ET | ≤
K(b− a)3

12n2
, K = max

[a,b]
|f ′′(x)|.

Simpson’s rule:

Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2)

+ · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]

|ES | ≤
L(b− a)5

180n4
, L = max

[a,b]
|f (4)(x)|

Numerical Integration

The arc length of the curve y = f(x) from x = a to
x = b is

L =

ˆ b

a

√
1 + [f ′(x)]2 dx.

Arc Length

Two types of improper integrals:

1. Infinite intervals: endpoints at ±∞.

ˆ ∞

a

f(x) dx = lim
t→∞

ˆ t

a

f(x) dx.

2. Discontinuities: if f(x) is discontinuous at b,

ˆ b

a

f(x) dx = lim
t→b−

ˆ t

a

f(x) dx.

An improper integral is convergent if the limit(s)
exist. Otherwise, it is divergent.

Comparison Theorem: Suppose that f and g are con-
tinuous functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

• If
´∞
a

f(x) dx is convergent, then
´∞
a

g(x) dx is
convergent.

• If
´∞
a

g(x) dx is divergent, then
´∞
a

f(x) dx is
divergent.

Improper Integrals

The center of mass, or centroid, of N masses
m1,m2, . . . ,mn at points x1, x2, . . . , xn, is given by

x =
m1x1 +m2x2 + · · ·+mnxn

m1 +m2 + · · ·+mn

For a plate of uniform density between the curves f(x)
and g(x) from x = a to x = b, the center of mass is

x =
My

A
=

´ b
a
x[f(x)− g(x)] dx´ b

a
f(x) dx

y =
Mx

A
=

´ b
a

1
2{[f(x)]

2 − [g(x)]2} dx´ b
a
f(x) dx

Theorem of Pappus: Let R be a plane region that
lies entirely on one side of a line l in the plane. If R is
rotated about l, then the volume of the resulting solid
is the product of the area A of R and the distance d
traveled by the centroid of R.

Center of Mass
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A sequence is an ordered list of numbers:

{an}∞n=1 = {an} = a1, a2, a3, . . .

A sequence {an} has a limit L if an can get arbitrarily
close to L as n gets large. If limn→∞ an exists, we
say it is convergent. Otherwise, it is divergent.

A sequence {an} is increasing if an < an+1 for all
n ≥ 1. It is decreasing if an > an+1 for all n ≥ 1.
The sequence is monotonic if it is either increasing
or decreasing.

A sequence {an} is bounded above if there exists a
number M such that an ≤ M for all n ≥ 1. Likewise,
it is bounded below if there exists a number m such
that an ≥ m for all n ≥ 1. If it is bounded above and
below, then it is bounded.

Sequences

If {an} and {bn} are convergent and c is constant,
then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

can = c lim
n→∞

an

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

(if lim
n→∞

bn ̸= 0)

lim
n→∞

(apn) =
[
lim
n→∞

an

]p
(if p > 0 and an > 0)

Limit Laws for Sequences

These theorems are useful for proving the conver-
gence (and corresponding limit) of more complicated
sequences.

• If limx→∞ f(x) = L and f(n) = an, then
limn→∞ an = L.

• (Squeeze Theorem) If an ≤ bn ≤ cn for
n ≥ n0 and limn→∞ an = limn→∞ cn = L, then
limn→∞ bn = L.

• If limn→∞ |an| = 0, then limn→∞ an = 0.

• If limn→∞ an = L and f is continuous at L, then
limn→∞ f(an) = f(L),

• (Monotonic Sequence Theorem) Every
bounded, monotonic sequence is convergent.

Convergence Theorems for Sequences

A series, denoted
∑

an, is an infinite sum of the
terms an. A partial sum of the series is defined
as

sn = a1 + a2 + · · ·+ an =

n∑
i=1

an.

A series is convergent if limn→∞ sn = s. Otherwise,
it is divergent.

A series
∑

an is absolutely convergent if
∑

|an|
is convergent. A series is conditionally conver-
gent if it is convergent but not absolutely convergent.

Basic Properties: if
∑

an and
∑

bn are convergent,

1.
∑∞

n=1 can = c
∑∞

n=1 an

2.
∑∞

n=1(an + bn) =
∑∞

n=1 an +
∑∞

n=1 bn

3.
∑∞

n=1(an − bn) =
∑∞

n=1 an −
∑∞

n=1 bn.

Series

Geometric series:

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·

The nth partial sum is

sn =
a(1− rn)

1− r
.

The geometric series converges for |r| < 1 and diverges
for |r| ≥ 1. If |r| < 1, the limit is

∞∑
n=0

arn =
a

1− r
(|r| < 1).

Harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

The harmonic series diverges.

p-series

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·

The p-series converges for p > 1 and diverges for
p ≤ 1. When p = 1, this is the harmonic series.

Other series
These series are useful when using comparison tests.

∞∑
n=1

1

n(n+ 1)
= 1 (converges as telescoping series)

∞∑
n=1

(−1)n+1 1

n
(converges by alternating series test)

∞∑
n=1

1

n!
= e (converges by ratio test)

∞∑
n=1

1

nn
(converges by root test)

Common Series Examples
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If limn→∞ an does not exist or if limn→∞ an ̸= 0,
then

∑∞
n=1 an is divergent.

Note: if limn→∞ an = 0, then this test is inconclu-
sive!

Divergence Test

Suppose f is a continuous, positive, decreasing func-
tion on [1,∞) and let an = f(n). Then,

• If
´∞
1

f(x) dx is convergent, then
∑∞

n=1 an is
convergent.

• If
´∞
1

f(x) dx is divergent, then
∑∞

n=1 an is di-
vergent.

Note: don’t forget about the continuous, positive, and
decreasing assumptions. The integral/series need not
start at 1: you can start at n = 2 or later if needed.

Remainder Estimate for the Integral Test: if an =
f(n) satisfies the conditions for convergence in the
integral test, then the remainder Rn = s− sn can be
estimated as

ˆ ∞

n+1

f(x) dx ≤ Rn ≤
ˆ ∞

n

f(x) dx.

Integral Test

Comparison Test: Suppose
∑

an and
∑

bn are series
with positive terms.

• If
∑

bn is convergent and an ≤ bn for all n, then∑
an is also convergent.

• If
∑

bn is divergent and an ≥ bn for all n, then∑
an is also divergent.

Limit Comparison Test: Suppose
∑

an and
∑

bn are
series with positive terms. If

lim
n→∞

an
bn

= c

where c is finite and c > 0, then either both series
converge or both diverge.

Note: don’t forget the positive assumption.

Comparison Tests

If we can write

∞∑
n=1

an =

∞∑
n=1

(−1)n−1bn,

where bn is positive, decreasing, and limn→∞ bn = 0,
then

∑
an converges.

Notes:

• (−1)n and (−1)n+1 are valid. (−1)2n is not.

• cos(πn) = (−1)n.

Alternating Series Estimation Theorem: For a series
that satisfies the alternating series test, the remainder
Rn = s− sn is bounded by the next term:

|Rn| ≤ bn+1.

Alternating Series Test

Ratio Test:

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then
∑

an is abso-

lutely convergent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L > 1, then
∑

an is diver-

gent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L = 1, then the test is in-

conclusive.

Root Test:

• If limn→∞ |an|1/n = L < 1, then
∑

an is abso-
lutely convergent.

• If limn→∞ |an|1/n = L > 1, then
∑

an is diver-
gent.

• If limn→∞ |an|1/n = L = 1, then the test is in-
conclusive.

Notes:

• Don’t forget to take the absolute value.

• For ratio test, look for factorials. For root test,
look for nth powers.

Ratio and Root Tests

A power series centered at x = a is of the form

f(x) =

∞∑
n=0

cn(x−a)n = c0+c1(x−a)+c2(x−a)2+· · ·

The cn’s are the coefficients of the series.

Convergence of Power Series: The radius of con-
vergence is a number R such that the power series
converges for |x−a| < R and diverges for |x−a| > R.
If the series converges only when x = a, then R = 0.
If the series converges for all x, then R = ∞. The
interval of convergence consists of all values of
x for which the series converges; this includes the
endpoints.

To find the interval of convergence, first use the Ratio
or Root Test to determine the radius of convergence
R. Then, solve for the endpoints using a different
convergence test.

Function Representations: use algebraic manipula-
tions (and derivatives/integrals) to switch between
functions and their series representations.
Example:

1

1 + 3x2
=

1

1− (−3x2)
=

∞∑
n=0

(−3x2)n =

∞∑
n=0

(−3)nx2n

Differentiation and Integration: use the power rule
term-by-term:

f ′(x) =

∞∑
n=1

ncn(x− a)n−1

ˆ
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

The radius of convergence remains the same under
differentation and integration, but the convergence of
the endpoints can change.

Power Series
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The Taylor series of a function f centered at x = a
is

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·

The Maclaurin series is the Taylor series centered
at zero. The Taylor polynomial Tn(x) of degree
n is the partial sum of the Taylor series up to the
degree n term.

Taylor’s Inequality: if |f (n+1)(x)| ≤ M for |x−a| < r,
then the remainder Rn(x) = f(x)−Tn(x) of the Tay-
lor series satisfies

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1 (for |x− a| < r)

A function f(x) is analytic on (a− r, a+ r) if it con-
verges to its Taylor series on (a − r, a + r). To show
f(x) is analytic, show limn→∞ |Rn(x)| = 0 using Tay-
lor’s Inequality.

Taylor Series

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · R = 1

ex =

∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+ · · · R = ∞

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+ · · · R = ∞

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+ · · · R = ∞

tan−1 x =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+ · · · R = 1

ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
= x− x2

2
+ · · · R = 1

(1 + x)k =

k∑
n=0

k(k − 1) · · · (k − n+ 1)

n!
xn R = 1

Common Taylor Series

A differential equation contains an unknown
function and one or more of its derivatives. Its order
is the highest derivative that occurs.

The general solution to a differential equation is a
family of functions containing one or more arbitrary
constants. An initial-value problem specifies an
initial condition to solve for these constants and
obtain one solution.

For first-order differential equations, the slope can be
plotted at each point. This is called a direction
(slope) field.

Differential Equations

Consider the initial-value problem

y′(x) = F (x, y), y(x0) = y0.

Euler’s Method says that the solution y(x) can be
approximated as

xn = xn−1 + h

yn = yn−1 + hF (xn−1, yn−1)

where h is the step size.

Euler’s Method

Separable equations take the form

dy

dx
= g(x)f(y).

To solve these, move the x and y terms to different
sides and integrate:

ˆ
1

f(y)
dy =

ˆ
g(x) dx.

Then, solve for y(x).

Note: don’t forget +C after the integration step.

Separable Equations

First-order linear equations take the form

dy

dx
+ P (x)y = Q(x).

To solve these, multiply both sides by the integrat-
ing factor

I(x) = e
´
P (x) dx.

Then, integrate both sides and solve for y(x).

Note: don’t forget +C after the integration step.

First-Order Linear Equations

Natural Growth: For a population size P , relative
growth rate k, and initial population size P0,

dP

dt
= kP, P (0) = P0.

The solution is
P (t) = P0e

kt.

Logistic Growth: For a population size P , relative
growth rate k, carrying capacity M , and initial pop-
ulation size P0,

dP

dt
= kP

(
1− P

M

)
, P (0) = P0.

The solution is

P (t) =
M

1 +Ae−kt
, A =

M − P0

P0
.

Mixing Problems: The general model is

(change in amount) = (rate in)− (rate out)

Predator-Prey: For a prey population R and predator
population W , the Lotka-Volterra model is

dR

dt
= kR− aRW

dW

dt
= −rW + bRW.

Equilibrium solutions occur when dR
dt = dW

dt = 0.

Modeling with Differential Equations
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A constant-coefficient, second-order, linear dif-
ferential equation takes the form

ay′′ + by′ + cy = g(x).

It is homogeneous if g(x) = 0 and nonhomoge-
neous if g(x) ̸= 0.

An initial-value problem specifies y(x0) and y′(x0)
at some point x0. A boundary-value problem
specifies y(x0) and y(x1) at two different points x0

and x1.

Homogeneous case:

ay′′ + by′ + cy = 0.

To solve, find roots of the auxiliary equation

ar2 + br + c = 0.

Three cases:

1. Distinct real roots r1 and r2:

y(x) = C1e
r1x + C2e

r2x.

2. Repeated real roots r = r1 = r2:

y(x) = C1e
rx + C2xe

rx.

3. Complex roots r = α± βi:

y(x) = C1e
αx cosβx+ C2e

αx sinβx.

Nonhomogeneous case:

ay′′ + by′ + cy = g(x).

To solve, first find the homogeneous solution yh(x)
using the method above. Then, find the particu-
lar solution yp(x) using undetermined coefficients or
variation of parameters. The general solution is

y(x) = yh(x) + yp(x).

Second-Order Linear Differential Equations

For the method of undetermined coefficients, we
guess the form of yp(x). There are three key cases:

1. Polynomials: if g(x) is a polynomial, guess a
general polynomial of the same degree:

g(x) = 3x2 =⇒ yp(x) = Ax2 +Bx+ C.

2. Exponentials: if g(x) is an exponential, guess
the same exponential with an unknown coeffi-
cient:

g(x) = 2e−4x =⇒ yp(x) = Ae−4x

3. Sine/cosine: if g(x) is a sine or cosine, guess a
sine and cosine together:

g(x) = cos(2x) =⇒ yp(x) = A cos(2x) +B sin(2x)

If g(x) is a sum, treat each term separately:

g(x) = e−3x + cos(2x)

=⇒ yp(x) = Ae−3x +B cos(2x) + C sin(2x)

If g(x) is a product, combine the guesses together:

g(x) = x cos(2x)

=⇒ yp(x) = (Ax+B) cos(2x) + (Cx+D) sin(2x)

If a term in your guess conflicts with the homogeneous
solution yh(x), “boost” yp(x) by x or x2:

yh(x) = C1 cos(2x) + C2 sin(2x), g(x) = cos(2x)

=⇒ yp(x) = Ax cos(2x) +Bx sin(2x)

After making a guess for yp(x), plug into the differ-
ential equation, group like terms together, and solve
for the undetermined coefficients.

Method of Undetermined Coefficients

For the method of variation of parameters, given
the homogeneous solution

yh(x) = C1y1(x) + C2y2(x),

guess a particular solution

yp(x) = u1(x)y1(x) + u2(x)y2(x).

To solve for u1(x) and u2(x), solve the system{
u′
1y1 + u′

2y2 = 0,

ay′′p + by′p + cyp = g(x).

This simplifies down to{
u′
1y1 + u′

2y2 = 0,

a(u′
1y

′
1 + u′

2y
′
2) = g(x).

Isolate u′
1 and u′

2 and integrate both sides to solve for
u1(x) and u2(x).

Variation of Parameters

The spring force with spring constant k is

Fspring = −kx.

The damping force with damping constant c is

Fdamping = −c
dx

dt
.

Newton’s Second Law yields the equation of motion:

m
d2x

dt2
+ c

dx

dt
+ kx = 0.

If c2 − 4km > 0, the spring is overdamped. If
c2 − 4km = 0, the spring is critically damped. If
c2 − 4km < 0, the spring is underdamped. The
period of oscillations for the underdamped case is

T =
2π

β
.

An external force F (t) is inserted as a nonhomoge-
neous term in the equation of motion. Resonance
occurs when F (t) has the same frequency as the ho-
mogeneous solution.

Vibrating Spring

7



A series solution to a differential equation takes the
form

y(x) =

∞∑
n=0

cnx
n.

Steps for solving:

1. Find y′(x) and y′′(x) and plug into the differ-
ential equation. If there is a nonhomogeneous
part, write its equivalent series representation.

2. Match the degree and starting indices of each
series and solve for the recursion relation of
the coefficients cn.

3. Solve for the general term cn. If the differential
equation is first-order, leave c0 undetermined. If
the differential equation is second-order, leave c0
and c1 undetermined.

4. Write y(x) using cn. You may need to split the
series into several series for even/odd values of
n, etc.

5. For initial-value problems, solve for c0 and/or
c1 if necessary.

Series Solutions
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