- 1. $\sum_{n=4}^{\infty} \left(\frac{1}{3}\right)^n$ converges. Solution: **True.** This is a geometric series with $r = \frac{1}{3} < 1$.
- 2. If $\sum a_n$ is absolutely convergent, then $\sum a_n$ is convergent. Solution: **True.** This is a known property of absolute convergence.
- 3. $\int e^{2x} dx = \frac{C}{2}e^{2x}$. Solution: False. $\int e^{2x} dx = \frac{1}{2}e^{2x} + C$.
- 4. If the nonhomogeneous part of a second-order, linear, constant-coefficient differential equation is $g(x) = e^x$, then $y_p(x) = Ae^x$ is always a valid form of the particular solution. Solution: False. If the homogeneous solution contains and e^x term, then you must boost the particular solution by x or x^2 .
- 5. If $f(x) \leq g(x)$ and $\int_0^\infty g(x) dx$ diverges, then $\int_0^\infty f(x) dx$ diverges. Solution: False. If the bigger function diverges, this says nothing about the smaller function. Take f(x) = 0 and g(x) = 1.
- 6. $\int \sin(3x) \cos(2x) dx = \frac{1}{2} \int [\sin(5x) + \sin(x)] dx.$ Solution: **True.** This is a product-to-sum identity.
- 7. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}$. Solution: **True.** This is the Taylor series expansion of e^x with x = -1.
- 8. On the first day of the semester, Oski starts an ant farm. Let A(t) be the number of ants in Oski's ant farm t days after the first day of the semester. If we model the ant population using the natural growth model with growth rate constant k = 3, then Oski's ant farm population adds 3 ants per day.

Solution: False. Oski's ant farm population grows exponentially.

- 9. Since $-\frac{1}{n} \leq \frac{\sin(n)}{n} \leq \frac{1}{n}$ and $\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0$, it follows that $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$. Solution: **True.** This is the squeeze theorem for sequences.
- 10. $\int_{-\infty}^{\infty} e^{-|x|} dx$ converges.

Solution: **True.** $\int_{-\infty}^{\infty} e^{-|x|} dx = \int_{-\infty}^{0} e^x dx + \int_{0}^{\infty} e^{-x} dx = 2.$

11. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges by the Ratio Test.

Solution: False. The Ratio Test is inconclusive. The alternating harmonic series converges by the alternating series test.

 Euler's Method gives an exact solution to a differential equation. Solution: False. Euler's Method is only an approximation. Math 1B

- 13. $\int_{1}^{\infty} \frac{1}{x} dx \text{ converges.}$ Solution: False. $\int_{1}^{\infty} \frac{1}{x} dx = \ln |x||_{1}^{\infty} = \infty.$
- 14. $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}-2}$ converges by the Direct Comparison Test to $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. Solution: False. Direct comparison doesn't work here because $\frac{1}{n^{3/2}-2} > \frac{1}{n^{3/2}}$. Instead, you can use the Limit Comparison Test.
- 15. The logistic growth equation is a linear differential equation. Solution: False. The logistic equation $\frac{dP}{dt} = kP(1 - P/M)$ is separable but not linear.
- 16. $\int_{-\pi/2}^{\pi/2} \csc(|x|) dx = \ln |\csc(\pi/2) \cot(\pi/2)| \ln |\csc(\pi/2) \cot(\pi/2)| = 0.$ Solution: False. $\csc(x)$ diverges at x = 0, so you must break it into two integrals. The improper integral diverges.
- 17. If we use $u = x^3$, then $\int_0^2 x^2 \cos(x^3) dx = \int_0^2 \frac{1}{3} \cos(u) du$. Solution: False. The bounds of the integral also need to change.
- 18. If the interval of convergence of a power series is [0, 4), then the radius of convergence is R = 2. Solution: **True.** The radius of convergence is half the length of the interval.
- 19. y' = y 2 is a separable differential equation. Solution: **True.** It is y' = g(x)f(y), where g(x) = 1 and f(y) = y - 2.

20.

$$\int_0^{\pi/2} \sin^5(x) \cos^2(x) \, dx = \int_0^1 (1 - u^2)^2 u^2 \, du.$$

Solution: True. This uses the substitution $u = \cos(x)$ together with the trig identity $\sin^2(x) = 1 - \cos^2(x)$.

- You can use integration by parts on improper integrals.
 Solution: True. All usual integration techniques can be used on improper integrals.
- 22. $\sum_{n=1}^{\infty} (-1)^n n^n$ diverges by the Root Test. Solution: **True.** Applying the root test gives n, which diverges to ∞ .
- 23. $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 2.$

Solution: False. The geometric series formula starts at 0. $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 2 - 1 = 1.$

24. The third-order Taylor polynomial of $\sin x$ centered at x = 0 is $T_3(x) = x - \frac{x^3}{6}$. Solution: **True.** The third-order Taylor polynomial goes up to the x^3 term.

- 25. Since $\lim_{n\to\infty} \frac{3\sqrt{n}+2+n^{-1}}{\sqrt{n}} = 3$, the series $\sum_{n=1}^{\infty} \frac{1}{3\sqrt{n}+2+n^{-1}}$ converges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges. Solution: False. The series diverges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges; it is a p-series with p = 1/2 < 1.
- 26. $\frac{x^2}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2}$ is a valid partial fraction decomposition. Solution: False. The degree of the numerator and denominator are both 2, so you must divide first.
- 27. The center of mass of the region between y = x + 1, y = 0, x = -1, and x = 1 is in the first quadrant. Solution: **True.** You can compute this using the formula or draw the graph to see that more of the region is in the first quadrant than the second quadrant.
- 28. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\cos(\pi n)n^2}$ converges by the alternating series test. Solution: False. Since $\cos(\pi n) = (-1)^n$, this series is actually equivalent to $\sum_{n=1}^{\infty} \frac{1}{n^2}$, which is not an alternating series. This is a convergent *p*-series.
- 29. In the method of variation of parameters, if the homogeneous solution is $y_h(x) = C_1 e^{-x} \cos(3x) + C_2 e^{-x} \sin(3x)$, then the particular solution is of the form $y_p(x) = u_1(x)e^{-x} \cos(3x) + u_2(x)e^{-x} \sin(3x)$. Solution: **True.** $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$.
- 30. A spring with a 3-kg mass and a damping constant 10 kg/s can be held stretched 0.5 meters beyond its natural length by a force of 2 newtons. The spring is then stretched 4 meters beyond its natural length and released with zero velocity. The spring constant is k = 4/2 = 2 newtons per meter. Solution: False. The spring constant is k = 2/0.5 = 4 newtons per meter.
- 31. dG/dt = 3G(1 0.01G) describes logistic growth with carrying capacity 100. Solution: **True.** dG/dt = 3G(1 - 0.01G) = 3G(1 - G/100).
- 32. $\int \frac{1}{x^2} dx = \ln(x^2) + C.$ Solution: False. $\int \frac{1}{x^2} dx = \frac{1}{x} + C.$
- 33. If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_n + b_n\}$ is divergent. Solution: False. Let $a_n = 1$ and $b_n = -1$. This does hold for convergent sequences: if $\{a_n\}$ and $\{b_n\}$ are convergent, then $\{a_n + b_n\}$ is convergent.
- 34. The Lotka-Volterra predator-prey equations always have exactly one equilibrium solution. Solution: False. There are usually two equilibrium solutions, one of which is the solution (0, 0).
- 35. If the ratio test on ∑_{n=0}[∞] a_nxⁿ says that the power series converges for |x 1/3| < 1, then the radius of convergence is R = 1/3.
 Solution: False. The radius of convergence is 1. The interval of convergence is centered at x = 1/3.
- Every bounded, monotonic sequence is convergent.
 Solution: True. This is the Monotone Sequence Theorem.

- 37. $\sum_{n=0}^{\infty} \cos(n^2) \frac{3^n}{4^n}$ is absolutely convergent. Solution: **True.** Take the absolute value and compare to the geometric series with r = 3/4.
- 38. If $y^{1/2} = \sin^2(x) + C$, then $y = \sin^4(x) + C^2$. Solution: False. $y = (\sin^2(x) + C)^2$.
- 39. A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of 5 L/min. Brine that contains 0.04 kg of salt per liter of water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15 L/min. If S(t) is the kilograms of salt in the tank after t minutes, the initial-value problem that describes this situation is

$$\frac{dS}{dt} = 0.25 - 0.015S, \quad S(0) = 0.$$

Solution: False. There is an additional 0.4 kg/min, so the rate in is 0.65 kg/min.

40. $\sum_{n=0}^{\infty} (-3)^n = \frac{1}{1-(-3)} = \frac{1}{4}.$

Solution: False. This is a geometric series with r = -3, which diverges. The formula only applies for |r| < 1.

- 41. The Maclaurin series of f(x) is the Taylor series of f(x) centered at x = 0. Solution: **True.** This is the definition of a Maclaurin series.
- 42. $\frac{1}{3-x} = \frac{1}{1-(x/3)} = \sum_{n=0}^{\infty} (x/3)^n$. Solution: False. In fact, $\frac{1}{3-x} = \frac{1/3}{1-(x/3)} = \frac{1}{3} \sum_{n=0}^{\infty} (x/3)^n$.
- 43. $\sum_{n=1}^{\infty} n^{4/3}$ converges since p = 4/3 > 1. Solution: False. This is p = -4/3 < 1, so the series diverges.
- 44. $2 \cdot 4 \cdot 6 \cdots (2m) = 2^m m!$

Solution: True. There are m factors, and you can factor out a 2 from each of them.

- 45. Since $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges. Solution: False. If the limit of the sequence is 0, you cannot say anything. In fact, this is a divergent *p*-series with p = 1/2.
- 46. The auxiliary equation for y'' + 2y' = 0 is $r^2 + 2 = 0$. Solution: False. The auxiliary equation is $r^2 + 2r = 0$.
- 47. If the Ratio Test is inconclusive, then you can still use a different test to determine if the series converges.Solution: True. If the Ratio Test is inconclusive, you can still try other tests (e.g. comparison, alternating, etc.)

48. $\sum_{n=1}^{\infty} (-1)^n n$ diverges by the Root Test.

Solution: False. The Root Test is inconclusive for this test. The series still diverges by the Divergence Test.

- 49. The radius of convergence of a power series can be zero. Solution: **True.** Consider the power series $\sum_{n=0}^{\infty} n! x^n$.
- 50. If the recursion relation of a series solution $\sum_{n=0}^{\infty} c_n x^n$ to a second-order linear differential equation is $c_{n+2} = \frac{1}{2}c_n$, then the general solution is

$$y(x) = c_0 \sum_{m=0}^{\infty} \frac{1}{2^m} x^{2m} + c_1 \sum_{m=0}^{\infty} \frac{1}{2^m} x^{2m+1}.$$

Solution: True. The even and odd terms are separate, and writing out the first several terms of the recursion relation yields the above series.

- 51. If the homogeneous solution of a nonhomogeneous, second-order, linear, constant-coefficient differential equation is $y_h(x) = C_1 e^{2x} + C_2 e^{-x}$ and the nonhomogeneous part is $g(x) = x \cos x$, then a valid guess for a particular solution is $y_p(x) = (Ax + B)(C \cos x + D \sin x)$. Solution: False. $y_p(x) = (Ax + B) \cos x + (Cx + D) \sin x$.
- 52. $\int \tan x \, dx = \sec^2 x + C$. Solution: False. $\int \tan x \, dx = \ln |\sec x| + C$.
- 53. $y(x) = e^x e^{-x+2}$ is a solution to y'' y = 0. Solution: **True.** Here, $C_1 = 1$ and $C_2 = -e^2$.
- 54. Taylor's Inequality states that if $|f^{(n+1)}(x)| \leq M$ for |x-a| < r, then the remainder $R_n(x) = f(x) T_n(x)$ of the Taylor series satisfies

$$|R_n(x)| \le \frac{M}{n!} |x-a|^n \text{ (for } |x-a| < r).$$

Solution: False. $|R_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$.

55.

$$\int_0^{\sqrt{10}} \frac{x^3}{\sqrt{10+x^2}} \, dx = \int_0^{\pi/4} \frac{(10^{3/2} \tan^3 \theta)(\sqrt{10} \sec^2 \theta)}{\sqrt{10+10 \tan^2 \theta}} \, d\theta = 10^{3/2} \int_0^{\pi/4} \tan^3 \theta \sec \theta \, d\theta.$$

Solution: True. This is trig substitution with $x = \sqrt{10} \tan \theta$.

56. $(n!)^2 = (2n)!$

Solution: False. $(n!)^2$ can't be simplified further.

57. $\sum_{n=0}^{\infty} (-1)^n x^{5n+2}$ is a power series. Solution: **True.** This is still $\sum_{n=0}^{\infty} c_n x^n$, but most of the c_n 's are zero.

- 58. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Solution: **True.** Use integral test.
- 59. $\operatorname{arccos}(x) = \cos^{-1}(x) = \frac{1}{\cos(x)}$ Solution: False. $\operatorname{arccos}(x) = \cos^{-1}(x) \neq \frac{1}{\cos(x)} = \sec(x).$
- 60. $\frac{1}{x^2(x^2+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+2}$ is a valid partial fraction decomposition. Solution: **True.** This satisfies the rules for repeated linear factors and irreducible quadratics.
- 61. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R = 7, then the series $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ has radius of convergence R = 7. Solution: **True.** The derivative of $\sum_{n=0}^{\infty} a_n x^n$ is $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$, and the radius of convergence of the derivative is the same.
- 62. The harmonic series is conditionally convergent. Solution: False. The alternating harmonic series is conditionally convergent.
- 63. $y'' + 3x^2y' 4\ln(x)y = x^2$ is a linear differential equation. Solution: **True.** This is of the form p(x)y'' + q(x)y' + r(x)y = g(x).

64.

$$(1+x)^{-1/3} = \frac{1}{(1+x)^{1/3}} = \frac{1}{1+x^{1/3}} = \sum_{n=0}^{\infty} (-x^{1/3})^n.$$

Solution: False. This is in fact a binomial series with k = -1/3.

- 65. Since $\frac{\cos^2 n}{n^2} \leq \frac{1}{n^2}$ for all $n \geq 1$, the series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2}$ converges. Solution: **True.** These series are both positive, and the direct comparison test holds.
- 66. $\int \sin(1-x) dx = -\cos(1-x) + C$. Solution: False. The substitution u = 1-x means du = -dx, so the solution is $\cos(1-x) + C$ (positive sign).
- 67. $\sum_{1}^{\infty} \frac{\cos n}{\sqrt{n}}$ converges by the alternating series test. Solution: False. $\cos n$ is not strictly alternating. The alternating series test only works for terms like $(-1)^n, (-1)^{n+1}$, etc.
- 68.

$$\int \frac{1}{x^2 + 2x + 4} \, dx = \int \frac{1}{(x+1)^2 + 3} \, dx = \int \frac{1}{u^2 + 3} \, du \quad \text{where } u = x + 1.$$

Solution: True. This is the complete-the-square formula.

- 69. $1 + 2 + 3 + 4 + \dots + 99 + 100 + \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. Solution: **True.** $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, and adding a finite number of terms makes no difference.
- 70. y' = xy + x is a separable differential equation. Solution: **True.** This can be re-written as y' = x(y+1).
- A boundary-value problem always has a solution.
 Solution: False. A boundary-value problem can have no solution.
- 72. $\sum_{n=2}^{\infty} \left(\frac{1}{n+1} \frac{1}{n-1} \right) = -\frac{3}{2}.$

Solution: True. This is a telescoping series and the only terms that don't cancel are -1 and -1/2.

- 73. If $\sum a_n$ is convergent, then $\sum (-1)^n a_n$ is convergent. Solution: False. This doesn't work with $a_n = (-1)^n \frac{1}{n}$. This statement is true if a_n is always positive.
- 74. For the differential equation y' + 2xy = 3x, one possible integrating factor is $I(x) = e^{x^2}$. Solution: **True.** The integrating factor is $I(x) = e^{\int 2x \, dx}$.

75.

$$\cos\left(\arctan\left(\frac{x}{2}\right)\right) = \frac{\sqrt{x^2 + 4}}{2}$$

Solution: False. The numerator and denominator are flipped: should be $\frac{2}{\sqrt{x^2+4}}$.

- 76. The series $\sum_{n=1}^{\infty} n^2 e^{-n}$ converges by the Integral Test. Solution: **True.** This satisfies all three conditions for the Integral Test (continuous, positive, eventually decreasing) and the integral converges.
- 77. The integral $\int x^2 e^{x^2} dx$ is impossible to evaluate exactly. Solution: False. $u = x^2$ is a valid substitution. On the other hand, the integral $\int e^{x^2} dx$ is impossible to evaluate exactly.
- 78. The arc length of $y = 10x^3$ from x = 1 to x = 2 is given by $\int_1^2 \sqrt{1+30x^2} \, dx$. Solution: False. Don't forget to square the derivative. The arc length is $\int_1^2 \sqrt{1+900x^4} \, dx$.
- 79. If the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is R = 2, then the interval of convergence is (-2, 2). Solution: False. The endpoints could be included in the interval.

80. If you approximate $\int_0^1 e^{x^2} dx$ with the Trapezoidal Rule with 2 subdivisions, you get $T_2 = \frac{1}{4} \left(1 + 2e^{1/4} + e \right) \approx 1.57$. Therefore, $\int_0^1 e^{x^2} dx \ge 1.4$.

Solution: True. Applying the Trapezoidal Rule error bound, the remainder is bounded by $e/16 \approx 0.17$, so the true value of the integral cannot be smaller than $T_2 - 0.17 \approx 1.57 - 0.17 = 1.4$. The true value is actually around 1.46.

- 81. The initial-value problem $y' = \sqrt{y}$, y(0) = 0 has only one solution: y = 0. Solution: False. $y = \frac{x^2}{4}$ is also a solution.
- 82. $\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n} \le \frac{1}{e}.$

Solution: True. By the Alternating Series Estimation Theorem with n = 1, the sum cannot be larger than the absolute value of the first term.