1. $\sum_{n=4}^{\infty}\left(\frac{1}{3}\right)^{n}$ converges.

Solution: True. This is a geometric series with $r=\frac{1}{3}<1$.
2. If $\sum a_{n}$ is absolutely convergent, then $\sum a_{n}$ is convergent.

Solution: True. This is a known property of absolute convergence.
3. $\int e^{2 x} d x=\frac{C}{2} e^{2 x}$.

Solution: False. $\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C$.
4. If the nonhomogeneous part of a second-order, linear, constant-coefficient differential equation is $g(x)=e^{x}$, then $y_{p}(x)=A e^{x}$ is always a valid form of the particular solution.
Solution: False. If the homogeneous solution contains and e^{x} term, then you must boost the particular solution by x or x^{2}.
5. If $f(x) \leq g(x)$ and $\int_{0}^{\infty} g(x) d x$ diverges, then $\int_{0}^{\infty} f(x) d x$ diverges.

Solution: False. If the bigger function diverges, this says nothing about the smaller function. Take $f(x)=0$ and $g(x)=1$.
6. $\int \sin (3 x) \cos (2 x) d x=\frac{1}{2} \int[\sin (5 x)+\sin (x)] d x$.

Solution: True. This is a product-to-sum identity.
7. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{e}$.

Solution: True. This is the Taylor series expansion of e^{x} with $x=-1$.
8. On the first day of the semester, Oski starts an ant farm. Let $A(t)$ be the number of ants in Oski's ant farm t days after the first day of the semester. If we model the ant population using the natural growth model with growth rate constant $k=3$, then Oski's ant farm population adds 3 ants per day.
Solution: False. Oski's ant farm population grows exponentially.
9. Since $-\frac{1}{n} \leq \frac{\sin (n)}{n} \leq \frac{1}{n}$ and $\lim _{n \rightarrow \infty}-\frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$, it follows that $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=0$.

Solution: True. This is the squeeze theorem for sequences.
10. $\int_{-\infty}^{\infty} e^{-|x|} d x$ converges.

Solution: True. $\int_{-\infty}^{\infty} e^{-|x|} d x=\int_{-\infty}^{0} e^{x} d x+\int_{0}^{\infty} e^{-x} d x=2$.
11. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$ converges by the Ratio Test.

Solution: False. The Ratio Test is inconclusive. The alternating harmonic series converges by the alternating series test.
12. Euler's Method gives an exact solution to a differential equation.

Solution: False. Euler's Method is only an approximation.
13. $\int_{1}^{\infty} \frac{1}{x} d x$ converges.

Solution: False. $\int_{1}^{\infty} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{\infty}=\infty$.
14. $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}-2}$ converges by the Direct Comparison Test to $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$.

Solution: False. Direct comparison doesn't work here because $\frac{1}{n^{3 / 2}-2}>\frac{1}{n^{3 / 2}}$. Instead, you can use the Limit Comparison Test.
15. The logistic growth equation is a linear differential equation.

Solution: False. The logistic equation $\frac{d P}{d t}=k P(1-P / M)$ is separable but not linear.
16. $\int_{-\pi / 2}^{\pi / 2} \csc (|x|) d x=\ln |\csc (\pi / 2)-\cot (\pi / 2)|-\ln |\csc (\pi / 2)-\cot (\pi / 2)|=0$.

Solution: False. $\csc (x)$ diverges at $x=0$, so you must break it into two integrals. The improper integral diverges.
17. If we use $u=x^{3}$, then $\int_{0}^{2} x^{2} \cos \left(x^{3}\right) d x=\int_{0}^{2} \frac{1}{3} \cos (u) d u$.

Solution: False. The bounds of the integral also need to change.
18. If the interval of convergence of a power series is $[0,4)$, then the radius of convergence is $R=2$.

Solution: True. The radius of convergence is half the length of the interval.
19. $y^{\prime}=y-2$ is a separable differential equation.

Solution: True. It is $y^{\prime}=g(x) f(y)$, where $g(x)=1$ and $f(y)=y-2$.
20.

$$
\int_{0}^{\pi / 2} \sin ^{5}(x) \cos ^{2}(x) d x=\int_{0}^{1}\left(1-u^{2}\right)^{2} u^{2} d u
$$

Solution: True. This uses the substitution $u=\cos (x)$ together with the trig identity $\sin ^{2}(x)=$ $1-\cos ^{2}(x)$.
21. You can use integration by parts on improper integrals.

Solution: True. All usual integration techniques can be used on improper integrals.
22. $\sum_{n=1}^{\infty}(-1)^{n} n^{n}$ diverges by the Root Test.

Solution: True. Applying the root test gives n, which diverges to ∞.
23. $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=2$.

Solution: False. The geometric series formula starts at $0 . \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=2-1=1$.
24. The third-order Taylor polynomial of $\sin x$ centered at $x=0$ is $T_{3}(x)=x-\frac{x^{3}}{6}$.

Solution: True. The third-order Taylor polynomial goes up to the x^{3} term.
25. Since $\lim _{n \rightarrow \infty} \frac{3 \sqrt{n}+2+n^{-1}}{\sqrt{n}}=3$, the series $\sum_{n=1}^{\infty} \frac{1}{3 \sqrt{n}+2+n^{-1}}$ converges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges. Solution: False. The series diverges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges; it is a p-series with $p=1 / 2<1$.
26. $\frac{x^{2}}{x^{2}-4}=\frac{A}{x+2}+\frac{B}{x-2}$ is a valid partial fraction decomposition.

Solution: False. The degree of the numerator and denominator are both 2 , so you must divide first.
27. The center of mass of the region between $y=x+1, y=0, x=-1$, and $x=1$ is in the first quadrant.

Solution: True. You can compute this using the formula or draw the graph to see that more of the region is in the first quadrant than the second quadrant.
28. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\cos (\pi n) n^{2}}$ converges by the alternating series test.

Solution: False. Since $\cos (\pi n)=(-1)^{n}$, this series is actually equivalent to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which is not an alternating series. This is a convergent p-series.
29. In the method of variation of parameters, if the homogeneous solution is $y_{h}(x)=C_{1} e^{-x} \cos (3 x)+$ $C_{2} e^{-x} \sin (3 x)$, then the particular solution is of the form $y_{p}(x)=u_{1}(x) e^{-x} \cos (3 x)+u_{2}(x) e^{-x} \sin (3 x)$.
Solution: True. $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$.
30. A spring with a $3-\mathrm{kg}$ mass and a damping constant $10 \mathrm{~kg} / \mathrm{s}$ can be held stretched 0.5 meters beyond its natural length by a force of 2 newtons. The spring is then stretched 4 meters beyond its natural length and released with zero velocity. The spring constant is $k=4 / 2=2$ newtons per meter.
Solution: False. The spring constant is $k=2 / 0.5=4$ newtons per meter.
31. $d G / d t=3 G(1-0.01 G)$ describes logistic growth with carrying capacity 100 .

Solution: True. $d G / d t=3 G(1-0.01 G)=3 G(1-G / 100)$.
32. $\int \frac{1}{x^{2}} d x=\ln \left(x^{2}\right)+C$.

Solution: False. $\int \frac{1}{x^{2}} d x=\frac{1}{x}+C$.
33. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n}+b_{n}\right\}$ is divergent.

Solution: False. Let $a_{n}=1$ and $b_{n}=-1$. This does hold for convergent sequences: if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent, then $\left\{a_{n}+b_{n}\right\}$ is convergent.
34. The Lotka-Volterra predator-prey equations always have exactly one equilibrium solution.

Solution: False. There are usually two equilibrium solutions, one of which is the solution $(0,0)$.
35. If the ratio test on $\sum_{n=0}^{\infty} a_{n} x^{n}$ says that the power series converges for $\left|x-\frac{1}{3}\right|<1$, then the radius of convergence is $R=\frac{1}{3}$.
Solution: False. The radius of convergence is 1 . The interval of convergence is centered at $x=1 / 3$.
36. Every bounded, monotonic sequence is convergent.

Solution: True. This is the Monotone Sequence Theorem.
37. $\sum_{n=0}^{\infty} \cos \left(n^{2}\right) \frac{3^{n}}{4^{n}}$ is absolutely convergent.

Solution: True. Take the absolute value and compare to the geometric series with $r=3 / 4$.
38. If $y^{1 / 2}=\sin ^{2}(x)+C$, then $y=\sin ^{4}(x)+C^{2}$.

Solution: False. $y=\left(\sin ^{2}(x)+C\right)^{2}$.
39. A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. Brine that contains 0.04 kg of salt per liter of water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at a rate of $15 \mathrm{~L} / \mathrm{min}$. If $S(t)$ is the kilograms of salt in the tank after t minutes, the initial-value problem that describes this situation is

$$
\frac{d S}{d t}=0.25-0.015 S, \quad S(0)=0
$$

Solution: False. There is an additional $0.4 \mathrm{~kg} / \mathrm{min}$, so the rate in is $0.65 \mathrm{~kg} / \mathrm{min}$.
40. $\sum_{n=0}^{\infty}(-3)^{n}=\frac{1}{1-(-3)}=\frac{1}{4}$.

Solution: False. This is a geometric series with $r=-3$, which diverges. The formula only applies for $|r|<1$.
41. The Maclaurin series of $f(x)$ is the Taylor series of $f(x)$ centered at $x=0$.

Solution: True. This is the definition of a Maclaurin series.
42. $\frac{1}{3-x}=\frac{1}{1-(x / 3)}=\sum_{n=0}^{\infty}(x / 3)^{n}$.

Solution: False. In fact, $\frac{1}{3-x}=\frac{1 / 3}{1-(x / 3)}=\frac{1}{3} \sum_{n=0}^{\infty}(x / 3)^{n}$.
43. $\sum_{n=1}^{\infty} n^{4 / 3}$ converges since $p=4 / 3>1$.

Solution: False. This is $p=-4 / 3<1$, so the series diverges.
44. $2 \cdot 4 \cdot 6 \cdots(2 m)=2^{m} m$!

Solution: True. There are m factors, and you can factor out a 2 from each of them.
45. Since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges.

Solution: False. If the limit of the sequence is 0 , you cannot say anything. In fact, this is a divergent p-series with $p=1 / 2$.
46. The auxiliary equation for $y^{\prime \prime}+2 y^{\prime}=0$ is $r^{2}+2=0$.

Solution: False. The auxiliary equation is $r^{2}+2 r=0$.
47. If the Ratio Test is inconclusive, then you can still use a different test to determine if the series converges.

Solution: True. If the Ratio Test is inconclusive, you can still try other tests (e.g. comparison, alternating, etc.)
48. $\sum_{n=1}^{\infty}(-1)^{n} n$ diverges by the Root Test.

Solution: False. The Root Test is inconclusive for this test. The series still diverges by the Divergence Test.
49. The radius of convergence of a power series can be zero.

Solution: True. Consider the power series $\sum_{n=0}^{\infty} n!x^{n}$.
50. If the recursion relation of a series solution $\sum_{n=0}^{\infty} c_{n} x^{n}$ to a second-order linear differential equation is $c_{n+2}=\frac{1}{2} c_{n}$, then the general solution is

$$
y(x)=c_{0} \sum_{m=0}^{\infty} \frac{1}{2^{m}} x^{2 m}+c_{1} \sum_{m=0}^{\infty} \frac{1}{2^{m}} x^{2 m+1}
$$

Solution: True. The even and odd terms are separate, and writing out the first several terms of the recursion relation yields the above series.
51. If the homogeneous solution of a nonhomogeneous, second-order, linear, constant-coefficient differential equation is $y_{h}(x)=C_{1} e^{2 x}+C_{2} e^{-x}$ and the nonhomogeneous part is $g(x)=x \cos x$, then a valid guess for a particular solution is $y_{p}(x)=(A x+B)(C \cos x+D \sin x)$.
Solution: False. $y_{p}(x)=(A x+B) \cos x+(C x+D) \sin x$.
52. $\int \tan x d x=\sec ^{2} x+C$.

Solution: False. $\int \tan x d x=\ln |\sec x|+C$.
53. $y(x)=e^{x}-e^{-x+2}$ is a solution to $y^{\prime \prime}-y=0$.

Solution: True. Here, $C_{1}=1$ and $C_{2}=-e^{2}$.
54. Taylor's Inequality states that if $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a|<r$, then the remainder $R_{n}(x)=$ $f(x)-T_{n}(x)$ of the Taylor series satisfies

$$
\left|R_{n}(x)\right| \leq \frac{M}{n!}|x-a|^{n} \quad(\text { for }|x-a|<r)
$$

Solution: False. $\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$.
55.

$$
\int_{0}^{\sqrt{10}} \frac{x^{3}}{\sqrt{10+x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\left(10^{3 / 2} \tan ^{3} \theta\right)\left(\sqrt{10} \sec ^{2} \theta\right)}{\sqrt{10+10 \tan ^{2} \theta}} d \theta=10^{3 / 2} \int_{0}^{\pi / 4} \tan ^{3} \theta \sec \theta d \theta
$$

Solution: True. This is trig substitution with $x=\sqrt{10} \tan \theta$.
56. $(n!)^{2}=(2 n)$!

Solution: False. $(n!)^{2}$ can't be simplified further.
57. $\sum_{n=0}^{\infty}(-1)^{n} x^{5 n+2}$ is a power series.

Solution: True. This is still $\sum_{n=0}^{\infty} c_{n} x^{n}$, but most of the c_{n} 's are zero.
58. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution: True. Use integral test.
59. $\arccos (x)=\cos ^{-1}(x)=\frac{1}{\cos (x)}$

Solution: False. $\arccos (x)=\cos ^{-1}(x) \neq \frac{1}{\cos (x)}=\sec (x)$.
60. $\frac{1}{x^{2}\left(x^{2}+2\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+2}$ is a valid partial fraction decomposition.

Solution: True. This satisfies the rules for repeated linear factors and irreducible quadratics.
61. If $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $R=7$, then the series $\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$ has radius of convergence $R=7$.
Solution: True. The derivative of $\sum_{n=0}^{\infty} a_{n} x^{n}$ is $\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$, and the radius of convergence of the derivative is the same.
62. The harmonic series is conditionally convergent.

Solution: False. The alternating harmonic series is conditionally convergent.
63. $y^{\prime \prime}+3 x^{2} y^{\prime}-4 \ln (x) y=x^{2}$ is a linear differential equation.

Solution: True. This is of the form $p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=g(x)$.
64.

$$
(1+x)^{-1 / 3}=\frac{1}{(1+x)^{1 / 3}}=\frac{1}{1+x^{1 / 3}}=\sum_{n=0}^{\infty}\left(-x^{1 / 3}\right)^{n}
$$

Solution: False. This is in fact a binomial series with $k=-1 / 3$.
65. Since $\frac{\cos ^{2} n}{n^{2}} \leq \frac{1}{n^{2}}$ for all $n \geq 1$, the series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}}$ converges.

Solution: True. These series are both positive, and the direct comparison test holds.
66. $\int \sin (1-x) d x=-\cos (1-x)+C$.

Solution: False. The substitution $u=1-x$ means $d u=-d x$, so the solution is $\cos (1-x)+C$ (positive sign).
67. $\sum_{1}^{\infty} \frac{\cos n}{\sqrt{n}}$ converges by the alternating series test.

Solution: False. $\cos n$ is not strictly alternating. The alternating series test only works for terms like $(-1)^{n},(-1)^{n+1}$, etc.
68.

$$
\int \frac{1}{x^{2}+2 x+4} d x=\int \frac{1}{(x+1)^{2}+3} d x=\int \frac{1}{u^{2}+3} d u \text { where } u=x+1
$$

Solution: True. This is the complete-the-square formula.
69. $1+2+3+4+\cdots+99+100+\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.

Solution: True. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, and adding a finite number of terms makes no difference.
70. $y^{\prime}=x y+x$ is a separable differential equation.

Solution: True. This can be re-written as $y^{\prime}=x(y+1)$.
71. A boundary-value problem always has a solution.

Solution: False. A boundary-value problem can have no solution.
72. $\sum_{n=2}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n-1}\right)=-\frac{3}{2}$.

Solution: True. This is a telescoping series and the only terms that don't cancel are -1 and $-1 / 2$.
73. If $\sum a_{n}$ is convergent, then $\sum(-1)^{n} a_{n}$ is convergent.

Solution: False. This doesn't work with $a_{n}=(-1)^{n} \frac{1}{n}$. This statement is true if a_{n} is always positive.
74. For the differential equation $y^{\prime}+2 x y=3 x$, one possible integrating factor is $I(x)=e^{x^{2}}$.

Solution: True. The integrating factor is $I(x)=e^{\int 2 x d x}$.
75.

$$
\cos \left(\arctan \left(\frac{x}{2}\right)\right)=\frac{\sqrt{x^{2}+4}}{2}
$$

Solution: False. The numerator and denominator are flipped: should be $\frac{2}{\sqrt{x^{2}+4}}$.
76. The series $\sum_{n=1}^{\infty} n^{2} e^{-n}$ converges by the Integral Test.

Solution: True. This satisfies all three conditions for the Integral Test (continuous, positive, eventually decreasing) and the integral converges.
77. The integral $\int x^{2} e^{x^{2}} d x$ is impossible to evaluate exactly.

Solution: False. $u=x^{2}$ is a valid substitution. On the other hand, the integral $\int e^{x^{2}} d x$ is impossible to evaluate exactly.
78. The arc length of $y=10 x^{3}$ from $x=1$ to $x=2$ is given by $\int_{1}^{2} \sqrt{1+30 x^{2}} d x$.

Solution: False. Don't forget to square the derivative. The arc length is $\int_{1}^{2} \sqrt{1+900 x^{4}} d x$.
79. If the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$ is $R=2$, then the interval of convergence is $(-2,2)$.

Solution: False. The endpoints could be included in the interval.
80. If you approximate $\int_{0}^{1} e^{x^{2}} d x$ with the Trapezoidal Rule with 2 subdivisions, you get $T_{2}=\frac{1}{4}\left(1+2 e^{1 / 4}+e\right) \approx$ 1.57. Therefore, $\int_{0}^{1} e^{x^{2}} d x \geq 1.4$.

Solution: True. Applying the Trapezoidal Rule error bound, the remainder is bounded by $e / 16 \approx 0.17$, so the true value of the integral cannot be smaller than $T_{2}-0.17 \approx 1.57-0.17=1.4$. The true value is actually around 1.46.
81. The initial-value problem $y^{\prime}=\sqrt{y}, y(0)=0$ has only one solution: $y=0$.

Solution: False. $y=\frac{x^{2}}{4}$ is also a solution.
82. $\sum_{n=1}^{\infty}(-1)^{n+1} e^{-n} \leq \frac{1}{e}$.

Solution: True. By the Alternating Series Estimation Theorem with $n=1$, the sum cannot be larger than the absolute value of the first term.

