Spring 2024 Math 1B Final Review Sheet (Prof. Paulin / Troy Tsubota)
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Basic Integrals
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Trigonometric Identities

Pythagorean identities:

sin?z +cos?z =1

tan?z + 1 =sec® z

The identities below would be provided on an exam
but are useful to know how to apply.

Half-angle identities:

1
sin®z = 5(1 — cos 2z)
cos’z = 5(1 + cos 2x)

Double-angle identities:

sin2x = 2sinx cos x

cos 2z = cos® x — sin?

\.

Substitution

Indefinite:
/ flu(@)/(z) do = / f(u) du.

Definite:
b u(b)
[ stueyi@as= [ g
a u(a)
Notes:

e DO NOT MIX z’s AND uw’s IN THE SAME
INTEGRAL.

o For definite integrals, be careful with your
bounds.




Integration by Parts

Indefinite:
/ f(@)g (2) dz = f(z)g(x) - / o) ' (x) d.

Definite:
b

b b
/ (@) (@) de = f(x)g(z)| — / 9(2) ' (z) du.

To pick f(z), use the LIATE rule:
1. Logarithmic (e.g. Inz)
2. Inverse trigonometric (e.g. arcsinx)
3. Algebraic (e.g. z?)
4. Trigonometric (e.g. sinx)
5. Exponential (e.g. e”)

The function higher on the list should be f(z). The
remaining factor should be ¢'(x).

Notes:

o LIATE is only a guideline, not a rule. It will
not work every time.

o The “hidden 17 often shows up in logarithmic
and inverse trig integrals.

e You may need to use IBP several times. Study
f;erI dz and [ e*sinzdx as representative ex-
amples.

o Study the example fﬁdw Prof. Paulin

really likes this one.

Integration of Rational Functions

The method of partial fractions is useful to solve inte-
grals involving rational functions P(x)/Q(x), where
P(z) and Q(z) are polynomials.

1. If the degree of the numerator is greater than or
equal to the degree of the denominator, divide
the numerator by the denominator.

2. Factor the denominator. Identify the linear and
irreducible quadratic factors.

3. Perform partial fraction decomposition.
4. Integrate each term separately.
Cases for partial fraction decomposition:

1. Distinct linear factors: use A, B, C, etc. for
numerators.

Ezxample:

?+20+1 A B ,_C
o 2—1 =42

z2x—1)(z+2) =

2. Repeated linear factors: add a separate term for

each power.

Example:

@-z+l A B C D | E
2x—-13 z 22 z-1 (z—12 (z—1)3

3. Irreducible quadratic factors: use Az+ B, Cx+
D, etc. for numerators.

Example:
T A Bx+C Dz+FE
(x—2)(x2+D(x2+4) -2 2241 2244
4. Repeated irreducible quadratic factors: add a
separate term for each power.
Ezxample:
17m+2m27m3_é Bz +C Dz + FE
x(x? +1)2 oz 241 (z2 +1)2

Trigonometric Integrals

Strategy for [ sin®z cos® x dx:
1. If a is odd, use u = cos .

2. If b is odd, use u = sin z.

Example:
C o 5 Y 4
/sm rcos xdr = /sm T cos xcosxdx
= /sin2 z(1 — sin® z)? cos z dz
= /u2(1 —u®)du
= /u2(1 —2u® +u) du
:/u272u4+u6du.

3. If —(a+b) > 0, rewrite in terms of tanz and
secr and use u = tan .

Ezxample:

.2 —4 2 2
/sm T cos xda::/tan rsec” xdx

= /u2 du.

4. If —(a+b) < 0, then use the double-angle for-
mula or another trig identity.

Example:

1 1
/cos2 rdr = /E + > cos(2x) dx

1 1.
=37 + 1 sin(2zx) + C.

Notes:

e Ifa and b are both odd, just pick one of the op-
tions.




Trigonometric Substitution

Integrals involving the following expressions can
usually be simplified with trigonometric substitution:

Expression | Substitution
Vk? — x? x = ksinf
VEk2 + 22 z=ktané
Va2 — k2 z =ksech
After trig substitution, you will always get a trig

integral that you can solve using trig integral tech-
niques.

Trig Identity
1 —sin®6 = cos? 6
1+ tan? 0 = sec? 6
sec?f —1 =tan? 0

Inverse trig functions inside trig functions can be
simplified by drawing a right triangle and using the
Pythagorean theorem.

Ezample:
T
sin(arctan(z/4)) = ———.
(arctan(z/1)) = ==
2 +4
T
4
Notes:

e Do not miz x’s and 0’s in the same integral.

e There need not be a square root in order to apply
trig substitution. It can apply to more general
integrals.

e You may need to complete the square. See
“Common Algebraic Tricks.”

o If there is a leading coefficient in front of x>

(e.g. V2522 —4), factor it out.

Common Algebraic Tricks

Some integrals require algebraic manipulation before
solving with one of the standard techniques. Here are
a few common cases:

e Completing the square: eliminate the linear

term in a quadratic.

b\ > b2
P tbrte=(x+=) +[c—=].
2 4

FEzxample: Using u =z — 1,

. 2
x

- d

,/x272x+2 v

:/(m—lj +1
_/(u—i—li du
u? +

2
U 2u 1
_/7u2+1du+/u2+1du+/7u2+1du.

Now complete each integral separately.

e Multiplying by the conjugate: multiplying the
numerator and denominator by a conjugate can
be useful for simplification.

Example:

1
/mdm
1 Vrtl-yE o
VeTT+vE Vari-vE
/m—f

r+1

= [(VaF - VA da

e Rationalizing substitutions: perform a substitu-
tion to turn a nonrational function into a ratio-
nal function.

Ezample: Using u = vx + 4,

S 2
x+4dx:2 Y du
T u? —4

This integral can now be completed using trig sub
or partial fractions.

Approximate Integration

In each method, Az = b_Ta and z; = a + iAx for
1=20,1,2,...,n. The error of an approximate inte-
gral is the difference between the true and approxi-
mated value of the integral:

(error) = (true value) — (approximate value)

() (2

K(b_a)3 "
- K > m
24n2 [aazbz)]df ()]

Midpoint rule:

M, = Ax

|[En| <

Trapezoidal rule:

T, = 52 1f(w0) + 2f() +

lf(b a)3 1
s e— K > ax .
12n2 ~ [a,b] |f (a:)\

4 2f(xn—1) + f(xn)]

|Er| <
Simpson’s rule:

S = S (wo) +45(1) + 2f(w2)
+oF2f(rn—2) +4f(Tn-1) + f(xn)]

K(b—a)®
Eg|l<——2 K> )
1Es| < —gg01 r[rvlla;f\f (2)]-

Calculating K: Break down |f”(x)| or | f®*)(x)| using
these two rules:

o |A+ B| < |A]+ |B| (“triangle inequality”)
e |[A-B|=|[A]-|B|

Then maximize each term separately.

Ezample: On the domain [1, 2],

|3z — 4a2® sin(z) + e~ | < |3z| + |42 sin(z)| + |e 7|
< 32| + 4fa”||sin(x)| + e~
<3.244-2°.1+4+¢ %




Improper Integrals

Two types of improper integrals:

1. Infinite intervals: endpoints at Foo.

/:o (@) dz = lim /atf(a:) da.

t—o0

2. Discontinuities: if f(x) is discontinuous at b,

b
/ fl@)de = tlirglﬁ t f(x)dx.

a

An improper integral is convergent if the limit(s)
exist. Otherwise, it is divergent.

Comparison Theorem: Suppose that f and g are con-
tinuous functions with f(z) > g(z) > 0 for x > a.

o If [ f(x)dz is convergent, then [ g(z)dx is
convergent.

o If [* g(x)dx is divergent, then [ f(z)dx is
divergent.

Key cases for the Comparison Theorem:

o [[71/aPdx converges if p > 1 and diverges if
p<1

. fol 1/2P dx converges if p < 1 and diverges if
p=>1

. f_ooo b® dz (b > 1) converges.
Notes:

o The discontinuity may be inside your interval.
Double check and split up the integral if needed.
If one part diverges, then the entire integral di-
verges.

Sequences

A sequence is an ordered list of numbers:

{an}nzy = {an} = a1, az, a3, ...

A sequence {a, } has a limit L if a,, can get arbitrarily
close to L as n gets large. If lim, .. a, exists, we
say it is convergent. Otherwise, it is divergent.

A sequence {a,} is bounded above if there exists a
number M such that a,, < M for all n > 1. Likewise,
it is bounded below if there exists a number m such
that a,, > m for all n > 1. If it is bounded above and
below, then it is bounded.

\.

A series, denoted Y a,, is an infinite sum of the
terms a,. A partial sum of the series is defined
as

N
SN =a1t+tag+---+an = E Q.
n=1

A series is convergent if limy_,o, sy = s. Other-
wise, it is divergent.

A series > a, is absolutely convergent if >_ |a,|
is convergent. A series is conditionally conver-
gent if it is convergent but not absolutely convergent.

Riemann’s Rearrangement Theorem: A conditionally
convergent series can be rearranged to sum to any
value.

Basic Series Rules: if > a,, and Y b, are convergent,
LYX can=cd> o7 an
2. 3ol (an +0n) = 3000 an + 307 by
3. Yomii(an =) =300 an — 3007 b

Notes:

o ALWAYS check conditions when using conver-
gence tests.

o If you're stuck, write out the first few terms.

Common Types of Series

Geometric series:

o
Zar"=a+ar+ar2+ar3—|—---

n=0

The geometric series converges for |r| < 1 and diverges
for |r| > 1. If |r| < 1, the limit is

Sat = (< ).
= 1—7r

p-series:

The p-series converges for p > 1 and diverges for
p < 1. When p = 1, this is the harmonic series.

Telescoping series: A telescoping series has cancella-
tions when adding each new term of the series. Use
the partial sum definition to determine convergence.

Ezxample:
lC
—A\n n+1
1
81:1757
1 1 1 1
m=lmgty 3=y
1 1 1 1
5 3t371 4
1
=1
5N N1
= /1 1 1
- =1 1— =
;(n n+1) NLOO< N+1>

Divergence Test

If lim,, ,o a, does not exist or if lim, , a, #* 0,
then > | ay, is divergent.

Note: if lim, .o a, = 0, then this test is inconclu-
sive!




Integral Test

Suppose f is a continuous, positive, decreasing func-
tion on [1,00) and let a,, = f(n). Then,

o If [ f(x)dx is convergent, then > °

el On 18
convergent.

o If [[* f(x)dx is divergent, then Y77 | ay is di-
vergent.

Notes:

e Don’t forget about the continuous, positive, and
decreasing assumptions.

e To determine if the function is decreasing, find
the derivative.

o The integral/series need not start at 1: you can
start at n = 2 or later if needed.

\.

Comparison Tests

Standard Comparison Test: Suppose Y a, and Y b,
are series with positive terms.

e If Y b, is convergent and a,, < b, for all n, then
> ay, is also convergent.

o If > b, is divergent and a,, > b, for all n, then
> ay is also divergent.

Limit Comparison Test: Suppose Y. a, and >_ b, are
series with positive terms. If

. an
lim — =c¢
n— oo n

where ¢ is finite and ¢ > 0, then either both series
converge or both diverge.

Note: don’t forget the positive assumption.

Alternating Series Test

If we can write

oo

Z an = Z(_Dn_lbna

n=1

where b,, is positive, decreasing, and lim,,_,~ b, = 0,
then > a,, converges.

Notes:
o (—1)" and (—1)"*! are valid. (—1)" is not.
e cos(mn) = (—1)™.

e sin(n) and cos(n) are not alternating.

o To determine if b, is decreasing, find the deriva-
tive.

\.

Ratio and Root Tests

Ratio Test:

o If lim,, o |“2| = L < 1, then > a, is abso-

Qn

lutely convergent.

o If lim,, oo |22 = L > 1, then Y a,, is diver-

Qn

gent.

o If lim,, o |22t2| = L = 1, then the test is in-

Qn

conclusive.
Root Test:

o If lim, o |a,|'/™ = L < 1, then 3" a, is abso-
lutely convergent.

o If lim, o0 |a,|/" = L > 1, then 3 a,, is diver-
gent.

o If lim, 0 |an|"/™ = L = 1, then the test is in-
conclusive.

Notes:
e Don’t forget to take the absolute value.

e For ratio test, look for factorials. For root test,
look for nth powers.

Power Series

A power series centered at z = a is of the form

f(z) = Z en(r—0a)" = cotci(x—a)+ea(x—a)*+- -

n=0

The ¢,’s are the coefficients of the series.

Convergence of Power Series: The radius of con-
vergence is a number R such that the power series
converges for |z —a| < R and diverges for |z —a| > R.
If the series converges only when = = a, then R = 0.
If the series converges for all x, then R = oco. The
interval of convergence consists of all values of
x for which the series converges; this includes the
endpoints.

Finding Interval of Convergence: First use the Ratio
or Root Test to determine the radius of convergence
R. Then, solve for the endpoints using a different
convergence test.

Function Representations: use algebraic manipula-
tions (and derivatives/integrals) to switch between
functions and their series representations.

Example:

oo oo

! 1 2\n n_2n
1322 1-— (—3z2) = Z(_?’x )" = z(—3) x

n=0 n=0

Differentiation and Integration: use the power rule
term-by-term:

fx) = Z nep(z —a)” !

n=1

B = (z—a)*t!
/f(x)dx = C+n§::ocnn7+1

The radius of convergence remains the same under
differentation and integration, but the convergence of
the endpoints can change.




Taylor Series \

The Taylor series of a function f centered at x = a
is

©  4(n)(g
f) =3 D gy

n!

f'(a)
1

n=0
= f(a) + A

@ =)+

(r—a)+

The Maclaurin series is the Taylor series centered
at zero. The Taylor polynomial T, (z) of degree
n is the partial sum of the Taylor series up to the
degree n term.

Taylor’s Inequality: if |f("+V)(2)| < M, for a —d <
x < a+ d, then the remainder R, (z) = f(x) — T,,(x)
of the Taylor series satisfies

M,
|Ry(2)] < CEm]]

|z —a|™ (for a —d <z < a+d)
Note: to calculate M,,, use the same technique as cal-
culating K described above in “Approximate Integra-
tion”.

\. J

Common Taylor Series N\

These will be on the front page of the exam.

1 oo
_ § :xn
-z n=0
X n
X
K — -
© _2) n!
n=
St 2n+1
X
sinz = E - R
n:O( ) (2n 4+ 1)!

oo
x2n

cosx:Z(—l)"W R=o0

n=0

I
g

e 2n+1

T
t -1, _ —_1)"
an~ T Z( ) 1

n=0

o0

In(1+z)=> (-1)

n=1

n
n—17_
n

oo

(1+I)k:Zk(k71)~~1~1!(kfn+1)xn el

n=0

Differential Equations \

A differential equation contains an unknown
function and one or more of its derivatives. Its order
is the highest derivative that occurs.

The general solution to a differential equation is a
family of functions containing one or more arbitrary
constants. An initial-value problem specifies an
initial condition to solve for these constants and ob-
tain one solution.

\. J

First-Order Differential Equations

A generic first-order differential equation is

y = F(z,y).

An equilibrium solution or constant solution
y(x) solves y' = F(z,y) = 0.

The slope F(x,y) can be plotted at each point (z,y).
This is called a direction (slope) field. Solutions
to the differential equation y(z) follow the slopes.

An autonomous differential equation is

y' = F(y) (does not depend on x).
The graph 3’ vs. y, known as a phase portrait, can be
used to create the direction field.

\. J

Separable Equations N\

Separable equations take the form

W~ ghiy)

To solve these, first find constant solutions satisfying

h(y) = 0.

Then, solve for non-constant solutions by separating
variables: )
——dy = / g(x) dzx.
/ h(y) (

Note: don’t forget +C after the integration step.

Orthogonal Trajectories

To find orthogonal trajectories to a family of
curves,

1. Implicitly differentiate to find the differential
equation y' = F(z,y) that the family of curves
satisfies.

. . . ’ 1
2. Solve the differential equation 3’ = yaexn]

the orthogonal trajectories.

for

\.

First-Order Linear Equations

First-order linear equations take the form

Yt alwly = bla).

To solve these, find the integrating factor:
Az) = el @) de,

Then, the solution is

1 xT
AW /eA(”)b(x) dx.

Note: don’t forget +C' after the integration step.

y(z) =

\.

Population Growth

Natural Growth: For a population size P, relative
growth rate k, and initial population size Fy,

=kP, P(0) = F.
= kP, P(0) = Py

The solution is
P(t) = Pye.

Logistic Growth: For a population size P, relative
growth rate k, carrying capacity M, and initial pop-
ulation size Py,

dP P

The solution is




A constant-coefficient, second-order, linear dif-
ferential equation takes the form

ay” + by’ + cy = g(x).

It is homogeneous if g(z) = 0 and nonhomoge-
neous if g(z) # 0.

An initial-value problem specifies y(zo) and y'(zo)
at some point zg. A boundary-value problem
specifies y(xo) and y(z1) at two different points
and x1.

Homogeneous case:

ay’ + by 4+ cy = 0.
To solve, find roots of the auxiliary equation
ar? +br+c=0.

Three cases:

1. Distinct real roots r1 and ra:

y(z) = C1e™* + Cae™™".

2. Repeated real root r = r; = ro:

y(x) = Cre™ + Coxe™™.

3. Complex roots r = a & fi:

y(z) = C1e*” cos(Bx) + Cae™” sin(Bx).

Nonhomogeneous case:

ay” +by' + cy = g(x).

To solve, first find the complementary solution
Ye(x) using the method above. Then, find the partic-
ular solution y,(x) using undetermined coefficients
or variation of parameters. The general solution is

y(@) = ye(z) + yp(x).

Second-Order Linear Differential Equations

For the method of undetermined coefficients, we
guess the form of y,(z). There are three key cases:

1. Polynomials: if g(z) is a polynomial, guess a
general polynomial of the same degree:

g(x) = 32> = y,(x) = Az® + Bz + C.

2. Exponentials: if g(z) is an exponential, guess
the same exponential with an unknown coeffi-
cient:

—4x

g(z) =27 = yy(x) = Ae

3. Sine/cosine: if g(x) is a sine or cosine, guess a
sine and cosine together:

g(z) = cos(2z) = yp(z) = Acos(2z) + Bsin(2x)

If g(z) is a sum, treat each term separately:
g(z) = e™** + cos(2z)
= yp(x) = Ae™ " + Bcos(2z) + C'sin(2z)
If g(x) is a product, follow steps in this order:
1. Leave the exponential term by itself (if present).
2. Split the sine and cosine (if present).
3. Make polynomial guesses.
g(z) = ze™ " cos(2x)
= yp(z) = e “[(Az + B) cos(2z) + (Cz + D) sin(2x)]

If a term in your guess conflicts with the complemen-

tary solution y.(x), multiply y,(z) by x or 2%

Ye(x) = C cos(2z) + Ce sin(2zx), g(x) = cos(2z)
= yp(x) = Az cos(2z) + Bz sin(2z)
After making a guess for y,(x), plug into the differ-

ential equation, group like terms together, and solve
for the undetermined coefficients.

Method of Undetermined Coefficients

Series Solutions

A series solution to a differential equation takes the

form -
y(z) = Z cnx”.
n=0

Steps for solving:

1. Find y'(z) and 3" (x) and plug into the differen-
tial equation.

2. Match the degree and starting indices to com-
bine into one series and solve for the recursion
relation of the coefficients ¢,,.

3. Solve for the general term ¢,. You will need to
leave ¢g (and possibly ¢;) undetermined.

4. Write y(z) using ¢,. You may need to split the
series into several series for even/odd values of
n, etc.

5. For initial-value problems, solve for ¢y (and c;)
if necessary.




