
Spring 2024 Math 1B Final Review Sheet (Prof. Paulin / Troy Tsubota)
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Basic Derivatives

ˆ
xn dx =

xn+1

n+ 1
+ C (n ̸= −1)

ˆ
1

x
dx = ln |x|+ C

ˆ
ex dx = ex + C

ˆ
ax dx =

ax

ln a
+ C

ˆ
sinx dx = − cosx+ C

ˆ
cosx dx = sinx+ C

ˆ
sec2 x dx = tanx+ C

ˆ
csc2 x dx = − cotx+ C

ˆ
secx tanx dx = secx+ C

ˆ
cscx cotx dx = − cscx+ C

ˆ
tanx dx = ln | secx|+ C

ˆ
cotx dx = ln | sinx|+ C

ˆ
secx dx = ln | secx+ tanx|+ C

ˆ
cscx dx = ln | cscx− cotx|+ C

ˆ
1√

k2 − x2
dx = arcsin

x

k
+ C

ˆ
1

k2 + x2
dx =

1

k
arctan

x

k
+ C

ˆ
1

x
√
x2 − k2

dx =
1

k
arcsec

x

k
+ C

Basic Integrals

Pythagorean identities:

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

The identities below would be provided on an exam
but are useful to know how to apply.

Half-angle identities:

sin2 x =
1

2
(1− cos 2x)

cos2 x =
1

2
(1 + cos 2x)

Double-angle identities:

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x

Trigonometric Identities

Indefinite: ˆ
f(u(x))u′(x) dx =

ˆ
f(u) du.

Definite:

ˆ b

a

f(u(x))u′(x) dx =

ˆ u(b)

u(a)

f(u) du.

Notes:

• DO NOT MIX x’s AND u’s IN THE SAME
INTEGRAL.

• For definite integrals, be careful with your
bounds.

Substitution
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Indefinite:ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
g(x)f ′(x) dx.

Definite:

ˆ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
ˆ b

a

g(x)f ′(x) dx.

To pick f(x), use the LIATE rule:

1. Logarithmic (e.g. lnx)

2. Inverse trigonometric (e.g. arcsinx)

3. Algebraic (e.g. x2)

4. Trigonometric (e.g. sinx)

5. Exponential (e.g. ex)

The function higher on the list should be f(x). The
remaining factor should be g′(x).

Notes:

• LIATE is only a guideline, not a rule. It will
not work every time.

• The “hidden 1” often shows up in logarithmic
and inverse trig integrals.

• You may need to use IBP several times. Study´
x2ex dx and

´
ex sinx dx as representative ex-

amples.

• Study the example
´

1
(1+x2)2 dx. Prof. Paulin

really likes this one.

Integration by Parts

The method of partial fractions is useful to solve inte-
grals involving rational functions P (x)/Q(x), where
P (x) and Q(x) are polynomials.

1. If the degree of the numerator is greater than or
equal to the degree of the denominator, divide
the numerator by the denominator.

2. Factor the denominator. Identify the linear and
irreducible quadratic factors.

3. Perform partial fraction decomposition.

4. Integrate each term separately.

Cases for partial fraction decomposition:

1. Distinct linear factors: use A, B, C, etc. for
numerators.

Example:

x2 + 2x+ 1

x(2x− 1)(x+ 2)
=

A

x
+

B

2x− 1
+

C

x+ 2

2. Repeated linear factors: add a separate term for
each power.

Example:

x3 − x+ 1

x2(x− 1)3
=

A

x
+

B

x2
+

C

x− 1
+

D

(x− 1)2
+

E

(x− 1)3

3. Irreducible quadratic factors: use Ax+B, Cx+
D, etc. for numerators.

Example:

x

(x− 2)(x2 + 1)(x2 + 4)
=

A

x− 2
+
Bx+ C

x2 + 1
+
Dx+ E

x2 + 4

4. Repeated irreducible quadratic factors: add a
separate term for each power.

Example:

1− x+ 2x2 − x3

x(x2 + 1)2
=

A

x
+

Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2

Integration of Rational Functions

Strategy for
´
sina x cosb x dx:

1. If a is odd, use u = cosx.

2. If b is odd, use u = sinx.

Example:
ˆ

sin2 x cos5 x dx =

ˆ
sin2 x cos4 x cosx dx

=

ˆ
sin2 x(1− sin2 x)2 cosx dx

=

ˆ
u2(1− u2)2 du

=

ˆ
u2(1− 2u2 + u4) du

=

ˆ
u2 − 2u4 + u6 du.

3. If −(a + b) ≥ 0, rewrite in terms of tanx and
secx and use u = tanx.

Example:

ˆ
sin2 x cos−4 x dx =

ˆ
tan2 x sec2 x dx

=

ˆ
u2 du.

4. If −(a + b) < 0, then use the double-angle for-
mula or another trig identity.

Example:

ˆ
cos2 x dx =

ˆ
1

2
+

1

2
cos(2x) dx

=
1

2
x+

1

4
sin(2x) + C.

Notes:

• If a and b are both odd, just pick one of the op-
tions.

Trigonometric Integrals
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Integrals involving the following expressions can
usually be simplified with trigonometric substitution:

Expression Substitution Trig Identity√
k2 − x2 x = k sin θ 1− sin2 θ = cos2 θ√
k2 + x2 x = k tan θ 1 + tan2 θ = sec2 θ√
x2 − k2 x = k sec θ sec2 θ − 1 = tan2 θ

After trig substitution, you will always get a trig
integral that you can solve using trig integral tech-
niques.

Inverse trig functions inside trig functions can be
simplified by drawing a right triangle and using the
Pythagorean theorem.

Example:

sin(arctan(x/4)) =
x√

x2 + 4
.

4

x

√
x2 + 4

Notes:

• Do not mix x’s and θ’s in the same integral.

• There need not be a square root in order to apply
trig substitution. It can apply to more general
integrals.

• You may need to complete the square. See
“Common Algebraic Tricks.”

• If there is a leading coefficient in front of x2

(e.g.
√
25x2 − 4), factor it out.

Trigonometric Substitution

Some integrals require algebraic manipulation before
solving with one of the standard techniques. Here are
a few common cases:

• Completing the square: eliminate the linear
term in a quadratic.

x2 + bx+ c =

(
x+

b

2

)2

+

(
c− b2

4

)
.

Example: Using u = x− 1,

ˆ
x2

x2 − 2x+ 2
dx

=

ˆ
x2

(x− 1)2 + 1
dx

=

ˆ
(u+ 1)2

u2 + 1
du

=

ˆ
u2

u2 + 1
du+

ˆ
2u

u2 + 1
du+

ˆ
1

u2 + 1
du.

Now complete each integral separately.

• Multiplying by the conjugate: multiplying the
numerator and denominator by a conjugate can
be useful for simplification.

Example:

ˆ
1√

x+ 1 +
√
x
dx

=

ˆ
1√

x+ 1 +
√
x
·
√
x+ 1−

√
x√

x+ 1−
√
x
dx

=

ˆ √
x+ 1−

√
x

(x+ 1)− x
dx

=

ˆ
(
√
x+ 1−

√
x) dx

• Rationalizing substitutions: perform a substitu-
tion to turn a nonrational function into a ratio-
nal function.

Example: Using u =
√
x+ 4,

ˆ √
x+ 4

x
dx = 2

ˆ
u2

u2 − 4
du.

This integral can now be completed using trig sub

or partial fractions.

Common Algebraic Tricks

In each method, ∆x = b−a
n and xi = a + i∆x for

i = 0, 1, 2, . . . , n. The error of an approximate inte-
gral is the difference between the true and approxi-
mated value of the integral:

(error) = (true value)− (approximate value)

Midpoint rule:

Mn = ∆x

[
f

(
x0 + x1

2

)
+ f

(
x1 + x2

2

)

+ · · ·+ f

(
xn−1 + xn

2

)]

|EM | ≤ K(b− a)3

24n2
, K ≥ max

[a,b]
|f ′′(x)|

Trapezoidal rule:

Tn =
∆x

2
[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)]

|ET | ≤
K(b− a)3

12n2
, K ≥ max

[a,b]
|f ′′(x)|.

Simpson’s rule:

Sn =
∆x

3
[f(x0) + 4f(x1) + 2f(x2)

+ · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)]

|ES | ≤
K(b− a)5

180n4
, K ≥ max

[a,b]
|f (4)(x)|.

Calculating K: Break down |f ′′(x)| or |f (4)(x)| using
these two rules:

• |A+B| ≤ |A|+ |B| (“triangle inequality”)

• |A ·B| = |A| · |B|

Then maximize each term separately.

Example: On the domain [1, 2],

|3x− 4x3 sin(x) + e−x| ≤ |3x|+ |4x3 sin(x)|+ |e−x|

≤ 3|x|+ 4|x3|| sin(x)|+ |e−x|

≤ 3 · 2 + 4 · 23 · 1 + e−1.

Approximate Integration
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Two types of improper integrals:

1. Infinite intervals: endpoints at ±∞.

ˆ ∞

a

f(x) dx = lim
t→∞

ˆ t

a

f(x) dx.

2. Discontinuities: if f(x) is discontinuous at b,

ˆ b

a

f(x) dx = lim
t→b−

ˆ t

a

f(x) dx.

An improper integral is convergent if the limit(s)
exist. Otherwise, it is divergent.

Comparison Theorem: Suppose that f and g are con-
tinuous functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

• If
´∞
a

f(x) dx is convergent, then
´∞
a

g(x) dx is
convergent.

• If
´∞
a

g(x) dx is divergent, then
´∞
a

f(x) dx is
divergent.

Key cases for the Comparison Theorem:

•
´∞
1

1/xp dx converges if p > 1 and diverges if
p ≤ 1.

•
´ 1
0
1/xp dx converges if p < 1 and diverges if

p ≥ 1.

•
´ 0
−∞ bx dx (b > 1) converges.

Notes:

• The discontinuity may be inside your interval.
Double check and split up the integral if needed.
If one part diverges, then the entire integral di-
verges.

Improper Integrals

A sequence is an ordered list of numbers:

{an}∞n=1 = {an} = a1, a2, a3, . . .

A sequence {an} has a limit L if an can get arbitrarily
close to L as n gets large. If limn→∞ an exists, we
say it is convergent. Otherwise, it is divergent.

A sequence {an} is bounded above if there exists a
number M such that an ≤ M for all n ≥ 1. Likewise,
it is bounded below if there exists a number m such
that an ≥ m for all n ≥ 1. If it is bounded above and
below, then it is bounded.

Sequences

A series, denoted
∑

an, is an infinite sum of the
terms an. A partial sum of the series is defined
as

sN = a1 + a2 + · · ·+ aN =

N∑
n=1

an.

A series is convergent if limN→∞ sN = s. Other-
wise, it is divergent.

A series
∑

an is absolutely convergent if
∑

|an|
is convergent. A series is conditionally conver-
gent if it is convergent but not absolutely convergent.

Riemann’s Rearrangement Theorem: A conditionally
convergent series can be rearranged to sum to any
value.

Basic Series Rules: if
∑

an and
∑

bn are convergent,

1.
∑∞

n=1 can = c
∑∞

n=1 an

2.
∑∞

n=1(an + bn) =
∑∞

n=1 an +
∑∞

n=1 bn

3.
∑∞

n=1(an − bn) =
∑∞

n=1 an −
∑∞

n=1 bn.

Notes:

• ALWAYS check conditions when using conver-
gence tests.

• If you’re stuck, write out the first few terms.

Series

Geometric series:

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·

The geometric series converges for |r| < 1 and diverges
for |r| ≥ 1. If |r| < 1, the limit is

∞∑
n=0

arn =
a

1− r
(|r| < 1).

p-series:

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·

The p-series converges for p > 1 and diverges for
p ≤ 1. When p = 1, this is the harmonic series.

Telescoping series: A telescoping series has cancella-
tions when adding each new term of the series. Use
the partial sum definition to determine convergence.

Example:
∞∑

n=1

(
1

n
− 1

n+ 1

)
.

s1 = 1− 1

2
,

s2 = 1− 1

2
+

1

2
− 1

3
= 1− 1

3
,

s3 = 1− 1

3
+

1

3
− 1

4
= 1− 1

4
,

...

sN = 1− 1

N + 1
.

∞∑
n=1

(
1

n
− 1

n+ 1

)
= lim

N→∞

(
1− 1

N + 1

)
= 1.

Common Types of Series

If limn→∞ an does not exist or if limn→∞ an ̸= 0,
then

∑∞
n=1 an is divergent.

Note: if limn→∞ an = 0, then this test is inconclu-
sive!

Divergence Test
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Suppose f is a continuous, positive, decreasing func-
tion on [1,∞) and let an = f(n). Then,

• If
´∞
1

f(x) dx is convergent, then
∑∞

n=1 an is
convergent.

• If
´∞
1

f(x) dx is divergent, then
∑∞

n=1 an is di-
vergent.

Notes:

• Don’t forget about the continuous, positive, and
decreasing assumptions.

• To determine if the function is decreasing, find
the derivative.

• The integral/series need not start at 1: you can
start at n = 2 or later if needed.

Integral Test

Standard Comparison Test: Suppose
∑

an and
∑

bn
are series with positive terms.

• If
∑

bn is convergent and an ≤ bn for all n, then∑
an is also convergent.

• If
∑

bn is divergent and an ≥ bn for all n, then∑
an is also divergent.

Limit Comparison Test: Suppose
∑

an and
∑

bn are
series with positive terms. If

lim
n→∞

an
bn

= c

where c is finite and c > 0, then either both series
converge or both diverge.

Note: don’t forget the positive assumption.

Comparison Tests

If we can write

∞∑
n=1

an =

∞∑
n=1

(−1)n−1bn,

where bn is positive, decreasing, and limn→∞ bn = 0,
then

∑
an converges.

Notes:

• (−1)n and (−1)n+1 are valid. (−1)2n is not.

• cos(πn) = (−1)n.

• sin(n) and cos(n) are not alternating.

• To determine if bn is decreasing, find the deriva-
tive.

Alternating Series Test

Ratio Test:

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then
∑

an is abso-

lutely convergent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L > 1, then
∑

an is diver-

gent.

• If limn→∞

∣∣∣an+1

an

∣∣∣ = L = 1, then the test is in-

conclusive.

Root Test:

• If limn→∞ |an|1/n = L < 1, then
∑

an is abso-
lutely convergent.

• If limn→∞ |an|1/n = L > 1, then
∑

an is diver-
gent.

• If limn→∞ |an|1/n = L = 1, then the test is in-
conclusive.

Notes:

• Don’t forget to take the absolute value.

• For ratio test, look for factorials. For root test,
look for nth powers.

Ratio and Root Tests

A power series centered at x = a is of the form

f(x) =

∞∑
n=0

cn(x−a)n = c0+c1(x−a)+c2(x−a)2+· · ·

The cn’s are the coefficients of the series.

Convergence of Power Series: The radius of con-
vergence is a number R such that the power series
converges for |x−a| < R and diverges for |x−a| > R.
If the series converges only when x = a, then R = 0.
If the series converges for all x, then R = ∞. The
interval of convergence consists of all values of
x for which the series converges; this includes the
endpoints.

Finding Interval of Convergence: First use the Ratio
or Root Test to determine the radius of convergence
R. Then, solve for the endpoints using a different
convergence test.

Function Representations: use algebraic manipula-
tions (and derivatives/integrals) to switch between
functions and their series representations.
Example:

1

1 + 3x2
=

1

1− (−3x2)
=

∞∑
n=0

(−3x2)n =

∞∑
n=0

(−3)nx2n

Differentiation and Integration: use the power rule
term-by-term:

f ′(x) =

∞∑
n=1

ncn(x− a)n−1

ˆ
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

The radius of convergence remains the same under
differentation and integration, but the convergence of
the endpoints can change.

Power Series
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The Taylor series of a function f centered at x = a
is

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·

The Maclaurin series is the Taylor series centered
at zero. The Taylor polynomial Tn(x) of degree
n is the partial sum of the Taylor series up to the
degree n term.

Taylor’s Inequality: if |f (n+1)(x)| ≤ Mn for a − d <
x < a+ d, then the remainder Rn(x) = f(x)− Tn(x)
of the Taylor series satisfies

|Rn(x)| ≤
Mn

(n+ 1)!
|x− a|n+1 (for a− d < x < a+ d)

Note: to calculate Mn, use the same technique as cal-
culating K described above in “Approximate Integra-
tion”.

Taylor Series

These will be on the front page of the exam.

1

1− x
=

∞∑
n=0

xn R = 1

ex =

∞∑
n=0

xn

n!
R = ∞

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
R = ∞

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
R = ∞

tan−1 x =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
R = 1

ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
R = 1

(1 + x)k =

∞∑
n=0

k(k − 1) · · · (k − n+ 1)

n!
xn R = 1

Common Taylor Series

A differential equation contains an unknown
function and one or more of its derivatives. Its order
is the highest derivative that occurs.

The general solution to a differential equation is a
family of functions containing one or more arbitrary
constants. An initial-value problem specifies an
initial condition to solve for these constants and ob-
tain one solution.

Differential Equations

A generic first-order differential equation is

y′ = F (x, y).

An equilibrium solution or constant solution
y(x) solves y′ = F (x, y) = 0.

The slope F (x, y) can be plotted at each point (x, y).
This is called a direction (slope) field. Solutions
to the differential equation y(x) follow the slopes.

An autonomous differential equation is

y′ = F (y) (does not depend on x).

The graph y′ vs. y, known as a phase portrait, can be
used to create the direction field.

First-Order Differential Equations

Separable equations take the form

dy

dx
= g(x)h(y).

To solve these, first find constant solutions satisfying

h(y) = 0.

Then, solve for non-constant solutions by separating
variables: ˆ

1

h(y)
dy =

ˆ
g(x) dx.

Note: don’t forget +C after the integration step.

Separable Equations

To find orthogonal trajectories to a family of
curves,

1. Implicitly differentiate to find the differential
equation y′ = F (x, y) that the family of curves
satisfies.

2. Solve the differential equation y′ = − 1
F (x,y) for

the orthogonal trajectories.

Orthogonal Trajectories

First-order linear equations take the form

dy

dx
+ a(x)y = b(x).

To solve these, find the integrating factor:

A(x) = e
´
a(x) dx.

Then, the solution is

y(x) =
1

eA(x)

ˆ
eA(x)b(x) dx.

Note: don’t forget +C after the integration step.

First-Order Linear Equations

Natural Growth: For a population size P , relative
growth rate k, and initial population size P0,

dP

dt
= kP, P (0) = P0.

The solution is
P (t) = P0e

kt.

Logistic Growth: For a population size P , relative
growth rate k, carrying capacity M , and initial pop-
ulation size P0,

dP

dt
= kP

(
1− P

M

)
, P (0) = P0.

The solution is

P (t) =
M

1 +Ae−kt
, A =

M − P0

P0
.

Population Growth
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A constant-coefficient, second-order, linear dif-
ferential equation takes the form

ay′′ + by′ + cy = g(x).

It is homogeneous if g(x) = 0 and nonhomoge-
neous if g(x) ̸= 0.

An initial-value problem specifies y(x0) and y′(x0)
at some point x0. A boundary-value problem
specifies y(x0) and y(x1) at two different points x0

and x1.

Homogeneous case:

ay′′ + by′ + cy = 0.

To solve, find roots of the auxiliary equation

ar2 + br + c = 0.

Three cases:

1. Distinct real roots r1 and r2:

y(x) = C1e
r1x + C2e

r2x.

2. Repeated real root r = r1 = r2:

y(x) = C1e
rx + C2xe

rx.

3. Complex roots r = α± βi:

y(x) = C1e
αx cos(βx) + C2e

αx sin(βx).

Nonhomogeneous case:

ay′′ + by′ + cy = g(x).

To solve, first find the complementary solution
yc(x) using the method above. Then, find the partic-
ular solution yp(x) using undetermined coefficients
or variation of parameters. The general solution is

y(x) = yc(x) + yp(x).

Second-Order Linear Differential Equations

For the method of undetermined coefficients, we
guess the form of yp(x). There are three key cases:

1. Polynomials: if g(x) is a polynomial, guess a
general polynomial of the same degree:

g(x) = 3x2 =⇒ yp(x) = Ax2 +Bx+ C.

2. Exponentials: if g(x) is an exponential, guess
the same exponential with an unknown coeffi-
cient:

g(x) = 2e−4x =⇒ yp(x) = Ae−4x

3. Sine/cosine: if g(x) is a sine or cosine, guess a
sine and cosine together:

g(x) = cos(2x) =⇒ yp(x) = A cos(2x) +B sin(2x)

If g(x) is a sum, treat each term separately:

g(x) = e−3x + cos(2x)

=⇒ yp(x) = Ae−3x +B cos(2x) + C sin(2x)

If g(x) is a product, follow steps in this order:

1. Leave the exponential term by itself (if present).

2. Split the sine and cosine (if present).

3. Make polynomial guesses.

g(x) = xe−x cos(2x)

=⇒ yp(x) = e−x[(Ax+B) cos(2x) + (Cx+D) sin(2x)]

If a term in your guess conflicts with the complemen-
tary solution yc(x), multiply yp(x) by x or x2:

yc(x) = C1 cos(2x) + C2 sin(2x), g(x) = cos(2x)

=⇒ yp(x) = Ax cos(2x) +Bx sin(2x)

After making a guess for yp(x), plug into the differ-
ential equation, group like terms together, and solve
for the undetermined coefficients.

Method of Undetermined Coefficients

A series solution to a differential equation takes the
form

y(x) =

∞∑
n=0

cnx
n.

Steps for solving:

1. Find y′(x) and y′′(x) and plug into the differen-
tial equation.

2. Match the degree and starting indices to com-
bine into one series and solve for the recursion
relation of the coefficients cn.

3. Solve for the general term cn. You will need to
leave c0 (and possibly c1) undetermined.

4. Write y(x) using cn. You may need to split the
series into several series for even/odd values of
n, etc.

5. For initial-value problems, solve for c0 (and c1)
if necessary.

Series Solutions
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