- 1. $\sum_{n=4}^{\infty} \left(\frac{1}{3}\right)^n$ converges.
- 2. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 3. The Maclaurin series of f(x) is the Taylor series of f(x) centered at x = 0.
- 4. If $\sum a_n$ is absolutely convergent, then $\sum a_n$ is convergent.
- 5. $\int e^{2x} dx = \frac{C}{2}e^{2x}$.
- 6. y' = y 2 is a separable and autonomous differential equation.
- 7. If the interval of convergence of a power series is [0,4), then the radius of convergence is R=2.
- 8.

$$\int_0^{\pi/2} \sin^5(x) \cos^2(x) \, dx = \int_0^1 (1 - u^2)^2 u^2 \, du.$$

- 9. If $f(x) = \sum_{n=0}^{\infty} 2^n (x-1)^n$, then $f^{(2024)}(1) = 2024! \cdot 2^{2024}$.
- 10. $\sum_{n=1}^{\infty} (-1)^n n^n$ diverges.
- 11. $\frac{x^2}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2}$ is a valid partial fraction decomposition.
- 12. If the nonhomogeneous part of a second-order, linear, constant-coefficient differential equation is $g(x) = e^x$, then $y_p(x) = Ae^x$ is always a valid form of the particular solution.
- 13. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\cos(\pi n)n^2}$ converges by the alternating series test.
- 14. The auxiliary equation for y'' + 2y' = 0 is $r^2 + 2 = 0$.
- 15. A boundary-value problem always has exactly one solution.
- 16. $\int \frac{1}{x^2} dx = \ln(x^2) + C$.
- 17. If the ratio test on $\sum_{n=0}^{\infty} a_n x^n$ says that the power series converges for $\left|x \frac{1}{3}\right| < 1$, then the radius of convergence is $R = \frac{1}{3}$.
- 18. $\sum_{n=0}^{\infty} \cos(n^2) \frac{3^n}{4^n}$ is absolutely convergent.

- 19. If $y^{1/2} = \sin^2(x) + C$, then $y = \sin^4(x) + C^2$.
- 20. If $\sum_{n=0}^{\infty} c_n(-3)^n$ converges, then it is possible that $\sum_{n=0}^{\infty} c_n$ diverges.
- 21. $\frac{1}{3-x} = \frac{1}{1-(x/3)} = \sum_{n=0}^{\infty} (x/3)^n$.
- 22. The Taylor series of $f(x) = e^x$ centered at x = 2 is $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$.
- 23. $\sum_{n=1}^{\infty} n^{4/3}$ converges since p = 4/3 > 1.
- 24. Since $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges.
- 25. The slope field below (Figure 1) describes y' = 2 y.

Figure 1: (Credit: Stewart Calculus)

- 26. $3x^2y' 4\ln(x)y = x^2$ is a first-order linear differential equation.
- 27. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges.
- 28. $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}-2}$ converges.
- 29. If the Ratio Test is inconclusive, then you can still use a different test to determine if the series converges.
- 30. $\sum_{n=1}^{\infty} (-1)^n n$ diverges by the Root Test.

- 31. The radius of convergence of a power series can be zero.
- 32. Consider the differential equation $y' = y^2 1$. If y(0) = 0, then $\lim_{x \to \infty} y(x) = \infty$.
- 33. If the complementary solution of a nonhomogeneous, second-order, linear, constant-coefficient differential equation is $y_c(x) = C_1 e^{2x} + C_2 e^{-x}$ and the nonhomogeneous part is $g(x) = x \cos x$, then a valid guess for a particular solution is $y_p(x) = (Ax + B)(C \cos x + D \sin x)$.
- 34. $\int \tan x \, dx = \sec^2 x + C.$
- 35. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}.$
- 36.

$$\int_0^{\sqrt{10}} \frac{x^3}{\sqrt{10+x^2}} dx = \int_0^{\pi/4} \frac{(10^{3/2} \tan^3 \theta)(\sqrt{10} \sec^2 \theta)}{\sqrt{10+10 \tan^2 \theta}} d\theta = 10^{3/2} \int_0^{\pi/4} \tan^3 \theta \sec \theta d\theta.$$

- 37. $(n!)^2 = (2n)!$
- 38. $\sum_{n=0}^{\infty} (-1)^n x^{5n+2}$ is a power series.
- 39. Since $\lim_{n\to\infty} \frac{3\sqrt{n}+2+n^{-1}}{\sqrt{n}}=3$, the series $\sum_{n=1}^{\infty} \frac{1}{3\sqrt{n}+2+n^{-1}}$ converges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges.
- 40. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R=7, then the series $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ has radius of convergence R=7.
- 41. $\int_1^\infty \frac{1}{x} dx$ converges.
- 42. $\arccos(x) = \cos^{-1}(x) = \frac{1}{\cos(x)}$
- 43. $\frac{1}{x^2(x^2+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+2}$ is a valid partial fraction decomposition.
- 44. The harmonic series is conditionally convergent.
- 45. $(1+x)^{-1/3} = \frac{1}{(1+x)^{1/3}} = \frac{1}{1+x^{1/3}} = \sum_{n=0}^{\infty} (-x^{1/3})^n.$
- 46. Since $\frac{\cos^2 n}{n^2} \le \frac{1}{n^2}$ for all $n \ge 1$, the series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2}$ converges.

47. If the recursion relation of a series solution $\sum_{n=0}^{\infty} c_n x^n$ to a second-order linear differential equation is $c_{n+2} = \frac{1}{2}c_n$, then the general solution is

$$y(x) = c_0 \sum_{k=0}^{\infty} \frac{1}{2^k} x^{2k} + c_1 \sum_{k=0}^{\infty} \frac{1}{2^k} x^{2k+1}.$$

- 48. $\int \sin(1-x) dx = -\cos(1-x) + C$.
- 49. $\sum_{1}^{\infty} \frac{\cos n}{\sqrt{n}}$ converges by the alternating series test.
- 50. $\int \frac{1}{x^2 + 2x + 4} dx = \int \frac{1}{(x+1)^2 + 3} dx = \int \frac{1}{u^2 + 3} du \text{ where } u = x + 1.$
- 51. y' = xy + x is a separable differential equation.
- 52. $\sum_{n=2}^{\infty} \left(\frac{1}{n+1} \frac{1}{n-1} \right) = -\frac{3}{2}.$
- 53. If $\sum a_n$ is convergent, then $\sum (-1)^n a_n$ is convergent.
- 54. For the differential equation y' + 2xy = 3x, one possible integrating factor is $A(x) = e^{x^2}$.
- 55. $\cos\left(\arctan\left(\frac{x}{2}\right)\right) = \frac{\sqrt{x^2 + 4}}{2}.$
- 56. The series $\sum_{n=1}^{\infty} n^2 e^{-n}$ converges.
- 57. If the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is R=2, then the interval of convergence is (-2,2).
- 58. All solutions to the initial-value problem $y' = \sqrt{y}$ are of the form $y = \left(\frac{1}{2}x + C\right)^2$.
- 59. If $\sum_{n=0}^{\infty} (-1)^n c_n 2^n$ is convergent, then $\sum_{n=0}^{\infty} \frac{c_n}{4^n}$ is convergent.
- 60. If $f(x) = \sum_{n=0}^{\infty} \frac{3^n}{n!} x^{n+2}$, then $f^{(500)}(0) = 3^{500}$.