1. $\sum_{n=4}^{\infty} \left(\frac{1}{3}\right)^n$ converges.

Solution: True. This is a geometric series with $r = \frac{1}{3} < 1$.

2. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution: True. Use integral test.

3. The Maclaurin series of f(x) is the Taylor series of f(x) centered at x=0.

Solution: True. This is the definition of a Maclaurin series.

4. If $\sum a_n$ is absolutely convergent, then $\sum a_n$ is convergent.

Solution: True. This is a known property of absolute convergence.

5. $\int e^{2x} dx = \frac{C}{2}e^{2x}$.

Solution: False. $\int e^{2x} dx = \frac{1}{2}e^{2x} + C$.

6. y' = y - 2 is a separable and autonomous differential equation.

Solution: True. It is y' = g(x)f(y), where g(x) = 1 and f(y) = y - 2. It is autonomous since the right-hand side does not depend on x.

7. If the interval of convergence of a power series is [0,4), then the radius of convergence is R=2.

Solution: True. The radius of convergence is half the length of the interval.

8.

$$\int_0^{\pi/2} \sin^5(x) \cos^2(x) \, dx = \int_0^1 (1 - u^2)^2 u^2 \, du.$$

Solution: True. This uses the substitution $u = \cos(x)$ together with the trig identity $\sin^2(x) = 1 - \cos^2(x)$.

9. If $f(x) = \sum_{n=0}^{\infty} 2^n (x-1)^n$, then $f^{(2024)}(1) = 2024! \cdot 2^{2024}$.

Solution: True. This is the Taylor series formula.

10. $\sum_{n=1}^{\infty} (-1)^n n^n$ diverges.

Solution: True. Applying the root test gives n, which diverges to ∞ .

11. $\frac{x^2}{x^2-4} = \frac{A}{x+2} + \frac{B}{x-2}$ is a valid partial fraction decomposition.

Solution: False. The degree of the numerator and denominator are both 2, so you must divide first.

12. If the nonhomogeneous part of a second-order, linear, constant-coefficient differential equation is $g(x) = e^x$, then $y_p(x) = Ae^x$ is always a valid form of the particular solution.

Solution: False. If the homogeneous solution contains and e^x term, then you must boost the particular solution by x or x^2 .

13. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\cos(\pi n)n^2}$ converges by the alternating series test.

Solution: False. Since $\cos(\pi n) = (-1)^n$, this series is actually equivalent to $\sum_{n=1}^{\infty} \frac{1}{n^2}$, which is not an alternating series. This is a convergent *p*-series.

14. The auxiliary equation for y'' + 2y' = 0 is $r^2 + 2 = 0$.

Solution: False. The auxiliary equation is $r^2 + 2r = 0$.

15. A boundary-value problem always has exactly one solution.

Solution: False. A boundary-value problem can have infinitely many solutions or no solution.

16. $\int \frac{1}{x^2} dx = \ln(x^2) + C$.

Solution: False. $\int \frac{1}{x^2} dx = \frac{1}{x} + C$.

17. If the ratio test on $\sum_{n=0}^{\infty} a_n x^n$ says that the power series converges for $|x - \frac{1}{3}| < 1$, then the radius of convergence is $R = \frac{1}{3}$.

Solution: False. The radius of convergence is 1. The interval of convergence is centered at x = 1/3.

18. $\sum_{n=0}^{\infty} \cos(n^2) \frac{3^n}{4^n}$ is absolutely convergent.

Solution: True. Take the absolute value and compare to the geometric series with r = 3/4.

- 19. If $y^{1/2} = \sin^2(x) + C$, then $y = \sin^4(x) + C^2$.

 Solution: False. $y = (\sin^2(x) + C)^2$.
- 20. If $\sum_{n=0}^{\infty} c_n (-3)^n$ converges, then it is possible that $\sum_{n=0}^{\infty} c_n$ diverges. Solution: False. $\sum_{n=0}^{\infty} c_n$ must converge since, from the first fact, we know that $\sum_{n=0}^{\infty} c_n x^n$ has radius of convergence $R \geq 3$.
- 21. $\frac{1}{3-x} = \frac{1}{1-(x/3)} = \sum_{n=0}^{\infty} (x/3)^n$. Solution: False. In fact, $\frac{1}{3-x} = \frac{1/3}{1-(x/3)} = \frac{1}{3} \sum_{n=0}^{\infty} (x/3)^n$.
- 22. The Taylor series of $f(x) = e^x$ centered at x = 2 is $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$. Solution: False. It is $e^{x-2+2} = e^2 e^{x-2} = \sum_{n=0}^{\infty} e^2 \frac{(x-2)^n}{n!}$
- 23. $\sum_{n=1}^{\infty} n^{4/3}$ converges since p = 4/3 > 1. Solution: False. This is p = -4/3 < 1, so the series diverges.
- 24. Since $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges. Solution: False. If the limit of the sequence is 0, you cannot say anything. In fact, this is a divergent p-series with p = 1/2.
- 25. The slope field below (Figure 1) describes y' = 2 y. Solution: False. The point (0,1) should have slope 1.
- 26. $3x^2y' 4\ln(x)y = x^2$ is a first-order linear differential equation. Solution: **True.** After simplifying, this is of the form y' + a(x)y = b(x).
- 27. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ converges. Solution: **True.** The alternating harmonic series converges by the alternating series test.
- 28. $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}-2}$ converges. Solution: **True.** Use the Limit Comparison Test to the *p*-series with p=3/2.

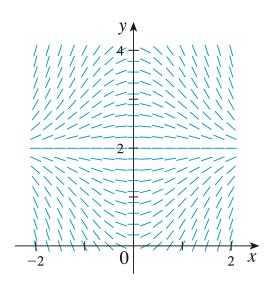


Figure 1: (Credit: Stewart Calculus)

29. If the Ratio Test is inconclusive, then you can still use a different test to determine if the series converges.

Solution: **True.** If the Ratio Test is inconclusive, you can still try other tests (e.g. comparison, alternating, etc.)

30. $\sum_{n=1}^{\infty} (-1)^n n$ diverges by the Root Test.

Solution: False. The Root Test is inconclusive for this test. The series still diverges by the Divergence Test.

31. The radius of convergence of a power series can be zero.

Solution: True. Consider the power series $\sum_{n=0}^{\infty} n! x^n$.

32. Consider the differential equation $y'=y^2-1$. If y(0)=0, then $\lim_{x\to\infty}y(x)=\infty$. Solution: False. By sketching the phase portrait and/or slope field, you will find $\lim_{x\to\infty}y(x)=-1$.

33. If the complementary solution of a nonhomogeneous, second-order, linear, constant-coefficient differential equation is $y_c(x) = C_1 e^{2x} + C_2 e^{-x}$ and the nonhomogeneous part is $g(x) = x \cos x$, then a valid guess for a particular solution is $y_p(x) = (Ax + B)(C \cos x + D \sin x)$.

Solution: False. $y_p(x) = (Ax + B)\cos x + (Cx + D)\sin x$.

34. $\int \tan x \, dx = \sec^2 x + C.$

Solution: False. $\int \tan x \, dx = \ln|\sec x| + C$.

35. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}.$

Solution: True. This is the Taylor series expansion of e^x with x = -1.

36.

$$\int_0^{\sqrt{10}} \frac{x^3}{\sqrt{10+x^2}} dx = \int_0^{\pi/4} \frac{(10^{3/2} \tan^3 \theta)(\sqrt{10} \sec^2 \theta)}{\sqrt{10+10 \tan^2 \theta}} d\theta = 10^{3/2} \int_0^{\pi/4} \tan^3 \theta \sec \theta d\theta.$$

Solution: True. This is trig substitution with $x = \sqrt{10} \tan \theta$.

37. $(n!)^2 = (2n)!$

Solution: False. $(n!)^2$ can't be simplified further.

38. $\sum_{n=0}^{\infty} (-1)^n x^{5n+2}$ is a power series.

Solution: True. This is still $\sum_{n=0}^{\infty} c_n x^n$, but most of the c_n 's are zero.

39. Since $\lim_{n\to\infty} \frac{3\sqrt{n}+2+n^{-1}}{\sqrt{n}} = 3$, the series $\sum_{n=1}^{\infty} \frac{1}{3\sqrt{n}+2+n^{-1}}$ converges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges.

Solution: False. The series diverges because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges; it is a p-series with p = 1/2 < 1.

40. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R=7, then the series $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ has radius of convergence R=7.

Solution: **True.** The derivative of $\sum_{n=0}^{\infty} a_n x^n$ is $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$, and the radius of convergence of the derivative is the same.

41. $\int_1^\infty \frac{1}{x} dx$ converges.

Solution: False. $\int_1^\infty \frac{1}{x} dx = \ln|x||_1^\infty = \infty$.

42. $\arccos(x) = \cos^{-1}(x) = \frac{1}{\cos(x)}$

Solution: False. $arccos(x) = cos^{-1}(x) \neq \frac{1}{cos(x)} = sec(x)$.

43. $\frac{1}{x^2(x^2+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+2}$ is a valid partial fraction decomposition.

Solution: True. This satisfies the rules for repeated linear factors and irreducible quadratics.

44. The harmonic series is conditionally convergent.

Solution: False. The alternating harmonic series is conditionally convergent.

45.

$$(1+x)^{-1/3} = \frac{1}{(1+x)^{1/3}} = \frac{1}{1+x^{1/3}} = \sum_{n=0}^{\infty} (-x^{1/3})^n.$$

Solution: False. This is in fact a binomial series with k = -1/3.

46. Since $\frac{\cos^2 n}{n^2} \le \frac{1}{n^2}$ for all $n \ge 1$, the series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2}$ converges.

Solution: True. These series are both positive, and the standard comparison test holds.

47. If the recursion relation of a series solution $\sum_{n=0}^{\infty} c_n x^n$ to a second-order linear differential equation is $c_{n+2} = \frac{1}{2}c_n$, then the general solution is

$$y(x) = c_0 \sum_{k=0}^{\infty} \frac{1}{2^k} x^{2k} + c_1 \sum_{k=0}^{\infty} \frac{1}{2^k} x^{2k+1}.$$

Solution: True. The even and odd terms are separate, and writing out the first several terms of the recursion relation yields the above series.

48. $\int \sin(1-x) dx = -\cos(1-x) + C$

Solution: False. The substitution u = 1 - x means du = -dx, so the solution is $\cos(1 - x) + C$ (positive sign).

49. $\sum_{1}^{\infty} \frac{\cos n}{\sqrt{n}}$ converges by the alternating series test.

Solution: False. $\cos n$ is not strictly alternating. The alternating series test only works for terms like $(-1)^n$, $(-1)^{n+1}$, etc.

50.

$$\int \frac{1}{x^2 + 2x + 4} \, dx = \int \frac{1}{(x+1)^2 + 3} \, dx = \int \frac{1}{u^2 + 3} \, du \text{ where } u = x + 1.$$

Solution: True. This is the complete-the-square formula.

51. y' = xy + x is a separable differential equation.

Solution: True. This can be re-written as y' = x(y+1).

52. $\sum_{n=2}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n-1} \right) = -\frac{3}{2}$.

Solution: True. This is a telescoping series and the only terms that don't cancel are -1 and -1/2.

53. If $\sum a_n$ is convergent, then $\sum (-1)^n a_n$ is convergent.

Solution: False. This doesn't work with $a_n = (-1)^n \frac{1}{n}$. This statement is true if a_n is always positive.

54. For the differential equation y' + 2xy = 3x, one possible integrating factor is $A(x) = e^{x^2}$. Solution: **True.** The integrating factor is $A(x) = e^{\int 2x \, dx}$.

55.

$$\cos\left(\arctan\left(\frac{x}{2}\right)\right) = \frac{\sqrt{x^2 + 4}}{2}.$$

Solution: False. The numerator and denominator are flipped: should be $\frac{2}{\sqrt{x^2+4}}$.

56. The series $\sum_{n=1}^{\infty} n^2 e^{-n}$ converges.

Solution: True. This satisfies all three conditions for the Integral Test (continuous, positive, eventually decreasing) and the integral converges.

57. If the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is R=2, then the interval of convergence is (-2,2).

Solution: False. The endpoints could be included in the interval.

58. All solutions to the initial-value problem $y' = \sqrt{y}$ are of the form $y = \left(\frac{1}{2}x + C\right)^2$. Solution: False. y = 0 is also a solution.

- 59. If $\sum_{n=0}^{\infty} (-1)^n c_n 2^n$ is convergent, then $\sum_{n=0}^{\infty} \frac{c_n}{4^n}$ is convergent. Solution: **True.** By the given statement, the power series $\sum_{n=0}^{\infty} c_n x^n$ converges for $x = \frac{1}{2}$, so $R \ge \frac{1}{2}$. Therefore, $x = \frac{1}{4}$ lies in the interval of convergence.
- 60. If $f(x) = \sum_{n=0}^{\infty} \frac{3^n}{n!} x^{n+2}$, then $f^{(500)}(0) = 3^{500}$. Solution: False. Re-index first to see $f(x) = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} x^n$. Thus, $f^{(500)}(0) = 3^{498}$.